Backtrader按日线交易

  |  

似乎在世界某个地方有一种权益(Interest)可以总结如下:

  • 使用每日柱线引入订单,但使用开盘价

这来自工单#105订单执行逻辑与当前数据#101动态投注计算中的对话

backtrader 尝试尽可能保持现实,并且在处理每日柱线时适用以下前提:

  • 当每日柱被评估时,柱线已经结束

这是有道理的,因为所有价格(open/high/low/close)元件都是已知的。实际上,当价格已知时,允许对open 价格采取行动似乎是不合逻辑的 close

明显的方法是使用日内数据并输入开盘价何时已知。但日内数据似乎并不那么普遍。

这就是将筛选器添加到 data feed 可以提供说明的地方。具有以下特性的过滤器:

  • 将每日数据转换为类似日内的数据

起泡的藤壶!!!好奇的读者会立即指出,例如Minutes 向上采样是 Days 合乎逻辑的并且有效,但是向下采样 DaysMinutes 是无法完成的。

这是100%正确的。下面介绍的筛检程式不会尝试这一点,而是一个谦卑而简单的目标:

  • 将每日酒吧分成两部分

    1. 只有开盘价而没有 volume

    2. 第 2 柱,它是常规每日柱的副本

这仍然可以作为一种合乎逻辑的方法:

  • 看到开盘价后,交易者可以采取行动

  • 订单在当天的其余时间内匹配(实际上可能会匹配也可能不匹配,具体取决于执行类型和价格约束)

完整代码如下所示。让我们看一个示例运行,其中包含每日柱的255 已知数据:

$ ./daysteps.py --data ../../datas/2006-day-001.txt

输出:

Calls,Len Strat,Len Data,Datetime,Open,High,Low,Close,Volume,OpenInterest
0001,0001,0001,2006-01-02T23:59:59,3578.73,3578.73,3578.73,3578.73,0.00,0.00
- I could issue a buy order during the Opening
0002,0001,0001,2006-01-02T23:59:59,3578.73,3605.95,3578.73,3604.33,0.00,0.00
0003,0002,0002,2006-01-03T23:59:59,3604.08,3604.08,3604.08,3604.08,0.00,0.00
- I could issue a buy order during the Opening
0004,0002,0002,2006-01-03T23:59:59,3604.08,3638.42,3601.84,3614.34,0.00,0.00
0005,0003,0003,2006-01-04T23:59:59,3615.23,3615.23,3615.23,3615.23,0.00,0.00
- I could issue a buy order during the Opening
0006,0003,0003,2006-01-04T23:59:59,3615.23,3652.46,3615.23,3652.46,0.00,0.00
...
...
0505,0253,0253,2006-12-27T23:59:59,4079.70,4079.70,4079.70,4079.70,0.00,0.00
- I could issue a buy order during the Opening
0506,0253,0253,2006-12-27T23:59:59,4079.70,4134.86,4079.70,4134.86,0.00,0.00
0507,0254,0254,2006-12-28T23:59:59,4137.44,4137.44,4137.44,4137.44,0.00,0.00
- I could issue a buy order during the Opening
0508,0254,0254,2006-12-28T23:59:59,4137.44,4142.06,4125.14,4130.66,0.00,0.00
0509,0255,0255,2006-12-29T23:59:59,4130.12,4130.12,4130.12,4130.12,0.00,0.00
- I could issue a buy order during the Opening
0510,0255,0255,2006-12-29T23:59:59,4130.12,4142.01,4119.94,4119.94,0.00,0.00

将发生以下情况:

  • next 称为: 510 times255 x 2

  • len策略和数据的总数255达到 ,这是预期的:数据只有那么多柱

  • 每当len 数据增加时,4个价格成分具有相同的值, open 即价格

    这里列印出一个注释,以表明在这个开放阶段可以采取行动,例如购买。

有效:

  • 每日 data feed 每天重播2个步骤,可以选择在价格组成部分和其他价格组成部分之间 open 采取行动

该筛选器将添加到下一版本中的预设 backtrader 分发版中。

包含筛选器的范例代码。

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import argparse
from datetime import datetime, time

import backtrader as bt


class DayStepsFilter(object):
    def __init__(self, data):
        self.pendingbar = None

    def __call__(self, data):
        # Make a copy of the new bar and remove it from stream
        newbar = [data.lines[i][0] for i in range(data.size())]
        data.backwards()  # remove the copied bar from stream

        openbar = newbar[:]  # Make an open only bar
        o = newbar[data.Open]
        for field_idx in [data.High, data.Low, data.Close]:
            openbar[field_idx] = o

        # Nullify Volume/OpenInteres at the open
        openbar[data.Volume] = 0.0
        openbar[data.OpenInterest] = 0.0

        # Overwrite the new data bar with our pending data - except start point
        if self.pendingbar is not None:
            data._updatebar(self.pendingbar)

        self.pendingbar = newbar  # update the pending bar to the new bar
        data._add2stack(openbar)  # Add the openbar to the stack for processing

        return False  # the length of the stream was not changed

    def last(self, data):
        '''Called when the data is no longer producing bars
        Can be called multiple times. It has the chance to (for example)
        produce extra bars'''
        if self.pendingbar is not None:
            data.backwards()  # remove delivered open bar
            data._add2stack(self.pendingbar)  # add remaining
            self.pendingbar = None  # No further action
            return True  # something delivered

        return False  # nothing delivered here


class St(bt.Strategy):
    params = ()

    def __init__(self):
        pass

    def start(self):
        self.callcounter = 0
        txtfields = list()
        txtfields.append('Calls')
        txtfields.append('Len Strat')
        txtfields.append('Len Data')
        txtfields.append('Datetime')
        txtfields.append('Open')
        txtfields.append('High')
        txtfields.append('Low')
        txtfields.append('Close')
        txtfields.append('Volume')
        txtfields.append('OpenInterest')
        print(','.join(txtfields))

        self.lcontrol = 0

    def next(self):
        self.callcounter += 1

        txtfields = list()
        txtfields.append('%04d' % self.callcounter)
        txtfields.append('%04d' % len(self))
        txtfields.append('%04d' % len(self.data0))
        txtfields.append(self.data.datetime.datetime(0).isoformat())
        txtfields.append('%.2f' % self.data0.open[0])
        txtfields.append('%.2f' % self.data0.high[0])
        txtfields.append('%.2f' % self.data0.low[0])
        txtfields.append('%.2f' % self.data0.close[0])
        txtfields.append('%.2f' % self.data0.volume[0])
        txtfields.append('%.2f' % self.data0.openinterest[0])
        print(','.join(txtfields))

        if len(self.data) > self.lcontrol:
            print('- I could issue a buy order during the Opening')

        self.lcontrol = len(self.data)


def runstrat():
    args = parse_args()

    cerebro = bt.Cerebro()
    data = bt.feeds.BacktraderCSVData(dataname=args.data)

    data.addfilter(DayStepsFilter)
    cerebro.adddata(data)

    cerebro.addstrategy(St)

    cerebro.run(stdstats=False, runonce=False, preload=False)
    if args.plot:
        cerebro.plot(style='bar')


def parse_args():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        description='Sample for pivot point and cross plotting')

    parser.add_argument('--data', required=False,
                        default='../../datas/2005-2006-day-001.txt',
                        help='Data to be read in')

    parser.add_argument('--plot', required=False, action='store_true',
                        help=('Plot the result'))

    return parser.parse_args()


if __name__ == '__main__':
    runstrat()

推荐阅读

相关文章

Backtrader跨越数字

《backtrader》的发布1.9.27.105纠正了一个疏忽。这是一个疏忽,因为拼图的所有部分都已到位,但启动并不是在所有角落都进行的。 该机制使用一个名为的属性_mindatas,因此让我们将其称为: mindatas。 社区问了这个问题,答案并不是很到位。

Backtrader期货补偿与现货补偿

版本1.9.32.116 增加了对社区中呈现的有趣用例 的支持 以期货开始交易,包括实物交割 让一个指针告诉你一些事情 如果需要, close 现货价格操作,有效地取消实物交割,无论是为了接收货物还是为了必须交付货物(并希望获利)来头寸。

Backtrader教程:分析仪 - PyFolio

注意 从(至少)2017-07-25pyfolio 开始,API已更改,不再 create_full_tear_sheet 具有 gross_lev 作为命名参数的参数。

Backtrader 多数据范例

社区中的几个主题似乎以如何跟踪订单为导向,特别是当几个data feeds在起作用时,还包括当多个订单一起工作时,

Backtrader信贷利息

在某些情况下,真实经纪人的现金金额可能会减少,因为资产操作包括利率。例子: 卖空股票 交易所买卖基金包括多头和空头 这意味着不仅交易构成了系统的盈利能力,因为信贷上的利息在帐户上佔有一席之地。 为了涵盖这种情况, backtrader 包括(从发佈1.8.8.96开始)功能来考虑这一点。

Backtrader教程:数据馈送 - 扩展(Extending DataFeed)

GitHub 中的问题实际上是在推动文档部分的完成,或者説明我了解我是否backtrader 具有我从一开始就设想的易用性和灵活性以及在此过程中做出的决定。 在本例中为问题 #9。

Backtrader教程:日志记录 - 编写器

将以下内容写出到流中: csv 流,

Backtrader教程:安装

要求和版本 backtrader 是独立的,没有外部依赖关系(除非要绘图) 基本要求是: Python 2.7 Python 3.2 / 3.3/ 3.4 / 3.5 pypy/pypy3 如果需要绘图,则其他要求: Matplotlib >= 1.4.

数据多时间帧

有时投资决策是使用不同的时间框架做出的: 每周评估趋势 每天执行条目 或者5分钟对60分钟。 这意味着需要将多个时间帧的数据组合在 backtrader 中以支援此类组合。 对它的本机支持已经内置。

Backtrader按日线交易

似乎在世界某个地方有一种权益(Interest)可以总结如下: 使用每日柱线引入订单,但使用开盘价 这来自工单#105订单执行逻辑与当前数据和#101动态投注计算中的对话 backtrader 尝试尽可能保持现实,并且在处理每日柱线时适用以下前提: 当每日柱被评估时,柱线已经结束 这是有道理的,