似乎在世界某个地方有一种权益(Interest)可以总结如下:
- 使用每日柱线引入订单,但使用开盘价
这来自工单#105订单执行逻辑与当前数据和#101动态投注计算中的对话
backtrader 尝试尽可能保持现实,并且在处理每日柱线时适用以下前提:
- 当每日柱被评估时,柱线已经结束
这是有道理的,因为所有价格(open/high/low/close)元件都是已知的。实际上,当价格已知时,允许对open
价格采取行动似乎是不合逻辑的 close
。
明显的方法是使用日内数据并输入开盘价何时已知。但日内数据似乎并不那么普遍。
这就是将筛选器添加到 data feed 可以提供说明的地方。具有以下特性的过滤器:
- 将每日数据转换为类似日内的数据
起泡的藤壶!!!好奇的读者会立即指出,例如Minutes
向上采样是 Days
合乎逻辑的并且有效,但是向下采样 Days
到 Minutes
是无法完成的。
这是100%正确的。下面介绍的筛检程式不会尝试这一点,而是一个谦卑而简单的目标:
-
将每日酒吧分成两部分
-
只有开盘价而没有 volume
-
第 2个 柱,它是常规每日柱的副本
-
这仍然可以作为一种合乎逻辑的方法:
-
看到开盘价后,交易者可以采取行动
-
订单在当天的其余时间内匹配(实际上可能会匹配也可能不匹配,具体取决于执行类型和价格约束)
完整代码如下所示。让我们看一个示例运行,其中包含每日柱的255
已知数据:
$ ./daysteps.py --data ../../datas/2006-day-001.txt
输出:
Calls,Len Strat,Len Data,Datetime,Open,High,Low,Close,Volume,OpenInterest 0001,0001,0001,2006-01-02T23:59:59,3578.73,3578.73,3578.73,3578.73,0.00,0.00 - I could issue a buy order during the Opening 0002,0001,0001,2006-01-02T23:59:59,3578.73,3605.95,3578.73,3604.33,0.00,0.00 0003,0002,0002,2006-01-03T23:59:59,3604.08,3604.08,3604.08,3604.08,0.00,0.00 - I could issue a buy order during the Opening 0004,0002,0002,2006-01-03T23:59:59,3604.08,3638.42,3601.84,3614.34,0.00,0.00 0005,0003,0003,2006-01-04T23:59:59,3615.23,3615.23,3615.23,3615.23,0.00,0.00 - I could issue a buy order during the Opening 0006,0003,0003,2006-01-04T23:59:59,3615.23,3652.46,3615.23,3652.46,0.00,0.00 ... ... 0505,0253,0253,2006-12-27T23:59:59,4079.70,4079.70,4079.70,4079.70,0.00,0.00 - I could issue a buy order during the Opening 0506,0253,0253,2006-12-27T23:59:59,4079.70,4134.86,4079.70,4134.86,0.00,0.00 0507,0254,0254,2006-12-28T23:59:59,4137.44,4137.44,4137.44,4137.44,0.00,0.00 - I could issue a buy order during the Opening 0508,0254,0254,2006-12-28T23:59:59,4137.44,4142.06,4125.14,4130.66,0.00,0.00 0509,0255,0255,2006-12-29T23:59:59,4130.12,4130.12,4130.12,4130.12,0.00,0.00 - I could issue a buy order during the Opening 0510,0255,0255,2006-12-29T23:59:59,4130.12,4142.01,4119.94,4119.94,0.00,0.00
将发生以下情况:
-
next
称为:510 times
即255 x 2
-
len
策略和数据的总数255
达到 ,这是预期的:数据只有那么多柱 -
每当
len
数据增加时,4个价格成分具有相同的值,open
即价格这里列印出一个注释,以表明在这个开放阶段可以采取行动,例如购买。
有效:
- 每日 data feed 每天重播2个步骤,可以选择在价格组成部分和其他价格组成部分之间
open
采取行动
该筛选器将添加到下一版本中的预设 backtrader 分发版中。
包含筛选器的范例代码。
from __future__ import (absolute_import, division, print_function, unicode_literals) import argparse from datetime import datetime, time import backtrader as bt class DayStepsFilter(object): def __init__(self, data): self.pendingbar = None def __call__(self, data): # Make a copy of the new bar and remove it from stream newbar = [data.lines[i][0] for i in range(data.size())] data.backwards() # remove the copied bar from stream openbar = newbar[:] # Make an open only bar o = newbar[data.Open] for field_idx in [data.High, data.Low, data.Close]: openbar[field_idx] = o # Nullify Volume/OpenInteres at the open openbar[data.Volume] = 0.0 openbar[data.OpenInterest] = 0.0 # Overwrite the new data bar with our pending data - except start point if self.pendingbar is not None: data._updatebar(self.pendingbar) self.pendingbar = newbar # update the pending bar to the new bar data._add2stack(openbar) # Add the openbar to the stack for processing return False # the length of the stream was not changed def last(self, data): '''Called when the data is no longer producing bars Can be called multiple times. It has the chance to (for example) produce extra bars''' if self.pendingbar is not None: data.backwards() # remove delivered open bar data._add2stack(self.pendingbar) # add remaining self.pendingbar = None # No further action return True # something delivered return False # nothing delivered here class St(bt.Strategy): params = () def __init__(self): pass def start(self): self.callcounter = 0 txtfields = list() txtfields.append('Calls') txtfields.append('Len Strat') txtfields.append('Len Data') txtfields.append('Datetime') txtfields.append('Open') txtfields.append('High') txtfields.append('Low') txtfields.append('Close') txtfields.append('Volume') txtfields.append('OpenInterest') print(','.join(txtfields)) self.lcontrol = 0 def next(self): self.callcounter += 1 txtfields = list() txtfields.append('%04d' % self.callcounter) txtfields.append('%04d' % len(self)) txtfields.append('%04d' % len(self.data0)) txtfields.append(self.data.datetime.datetime(0).isoformat()) txtfields.append('%.2f' % self.data0.open[0]) txtfields.append('%.2f' % self.data0.high[0]) txtfields.append('%.2f' % self.data0.low[0]) txtfields.append('%.2f' % self.data0.close[0]) txtfields.append('%.2f' % self.data0.volume[0]) txtfields.append('%.2f' % self.data0.openinterest[0]) print(','.join(txtfields)) if len(self.data) > self.lcontrol: print('- I could issue a buy order during the Opening') self.lcontrol = len(self.data) def runstrat(): args = parse_args() cerebro = bt.Cerebro() data = bt.feeds.BacktraderCSVData(dataname=args.data) data.addfilter(DayStepsFilter) cerebro.adddata(data) cerebro.addstrategy(St) cerebro.run(stdstats=False, runonce=False, preload=False) if args.plot: cerebro.plot(style='bar') def parse_args(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, description='Sample for pivot point and cross plotting') parser.add_argument('--data', required=False, default='../../datas/2005-2006-day-001.txt', help='Data to be read in') parser.add_argument('--plot', required=False, action='store_true', help=('Plot the result')) return parser.parse_args() if __name__ == '__main__': runstrat()