Backtrader改進代碼

  |  

時不時地,帶有 backtrader 代碼的示例會在互聯網上彈出。在我看來,有幾個是中國人。最新的一個在這裡:

標題是: backtrader-學習筆記2,這顯然(感謝谷歌)翻譯成 backtrader- 學習筆記2。如果這些是學習筆記,讓我們嘗試改進那裡的代碼,在那裡它真的可以改進,在我個人看來, backtrader 最閃耀的地方。

__init__ 研究筆記中的策略方法中,我們發現以下內容

def __init__(self):
    ...
    self.ma1 = bt.indicators.SMA(self.datas[0],
                                   period=self.p.period
                                  )
    self.ma2 = bt.indicators.SMA(self.datas[1],
                                   period=self.p.period
                                  )

這裡沒什麼可爭論的(風格是非常個人化的東西,我不會碰那個)

而在next 策略的方法中,以下是買賣的邏輯決策。

...
# Not yet ... we MIGHT BUY if ...
if (self.ma1[0]-self.ma1[-1])/self.ma1[-1]>(self.ma2[0]-self.ma2[-1])/self.ma2[-1]:
...

...
# Already in the market ... we might sell
if (self.ma1[0]-self.ma1[-1])/self.ma1[-1]<=(self.ma2[0]-self.ma2[-1])/self.ma2[-1]:
...

這兩個邏輯塊實際上是可以做得更好的,這也將增加可讀性,可維護性和調整(如果需要的話)

與其將移動平均線(當前點0 和上一點 -1)進行比較,然後再進行一些劃分,不如讓我們看看如何為我們預先計算它。

讓我們調整一下__init__

def __init__(self):
    ...

    # Let's create the moving averages as before
    ma1 = bt.ind.SMA(self.data0, period=self.p.period)
    ma2 = bt.ind.SMA(self.data1, period=self.p.period)

    # Use line delay notation (-x) to get a ref to the -1 point
    ma1_pct = ma1 / ma1(-1) - 1.0  # The ma1 percentage part
    ma2_pct = ma2 / ma2(-1) - 1.0  # The ma2 percentage part

    self.buy_sig = ma1_pct > ma2_pct  # buy signal
    self.sell_sig = ma1_pct <= ma2_pct  # sell signal

現在,我們可以將其帶到該方法中next ,並執行以下操作:

def next(self):
    ...
    # Not yet ... we MIGHT BUY if ...
    if self.buy_sig:
    ...

    ...
    # Already in the market ... we might sell
    if self.sell_sig:
    ...

請注意,我們甚至不必使用self.buy_sig[0],因為布爾測試 make with if self.buy_sig 已經被 backtrader 機制轉換為檢查 [0]

恕我直言,這是一種更簡潔的方法,其中使用標準算術和邏輯運算(並使用line延遲表示法(-x))定義__init__邏輯,使代碼變得更好。

無論如何,為了結束語,人們也可以嘗試使用內置PercentChange 指標(又名 PctChange

請參見:backtrader文檔 - 指標參考

顧名思義,它確實已經計算了給定柱線週期內的百分比變化。中的__init__ 代碼現在看起來像這樣

def __init__(self):
    ...

    # Let's create the moving averages as before
    ma1 = bt.ind.SMA(self.data0, period=self.p.period)
    ma2 = bt.ind.SMA(self.data1, period=self.p.period)

    ma1_pct = bt.ind.PctChange(ma1, period=1)  # The ma1 percentage part
    ma2_pct = bt.ind.PctChange(ma2, period=1)  # The ma2 percentage part

    self.buy_sig = ma1_pct > ma2_pct  # buy signal
    self.sell_sig = ma1_pct <= ma2_pct  # sell signal

在這種情況下,它沒有太大的區別,但如果計算更大,更複雜,它肯定會為您節省很多麻煩。

祝您反向交易愉快!

推薦閱讀

相關文章

Backtrader教程:觀察者 - 參考

基準 backtrader類 .observers.基準() 此 observer 存儲策略的回報和參考資產的回報,參考資產是傳遞到系統的數據之一。

Backtrader教程:指標 - 開發

如果必須開發任何東西(除了一個或多個獲勝策略之外),那麼這個東西就是一個自定義指標。 根據作者的說法,平臺內的這種開發很容易。 需要滿足以下條件: 從指標派生的類(直接或從現有的子類派生) 定義它將保持lines 指標必須至少具有 1 line。

Backtrader教程:安裝

要求和版本 backtrader 是獨立的,沒有外部依賴關係(除非要繪圖) 基本要求是: Python 2.7 Python 3.2 / 3.3/ 3.4 / 3.5 pypy/pypy3 如果需要繪圖,則其他要求: Matplotlib >= 1.4.

Backtrader期貨補償與現貨補償

版本1.9.32.116 增加了對社區中呈現的有趣用例 的支援 以期貨開始交易,包括實物交割 讓一個指標告訴你一些事情 如果需要, close 現貨價格操作,有效地取消實物交割,無論是為了接收貨物還是為了必須交付貨物(並希望獲利)來頭寸。

Backtrader教程:日誌記錄 - 編寫器

將以下內容寫出到流中: csv 流,

Backtrader迪克森移動平均線

下面的reddit帖子以自己的作者Nathan Dickson(reddit句柄)命名了這個平均值Dickson移動平均線。 在一次對reddit Algotrading 的定期訪問中,我發現了一篇關於移動平均線的帖子,該移動平均線試圖模仿Jurik移動平均線(又名JMA)。

Backtrader交叉回溯測試陷阱

在backtrader 社區中 ,傾向於重複的事情是,用戶解釋了複製在例如 TradingView 中獲得的回溯測試結果的意願,這些天非常流行,或者其他一些回溯測試平臺。

Backtraderta-lib 集成

即使 backtrader 提供了已經 high 數量的內置指標,並且開發指標主要是定義輸入,輸出和以自然的方式編寫公式的問題,有些人也希望使用TA-LIB。

Backtrader教程:指標 - ta-lib

即使 backtrader 提供了已經 high 數量的內置指標,並且開發指標主要是定義輸入,輸出和以自然的方式編寫公式的問題,有些人也希望使用TA-LIB。

Backtrader動量策略

在另一篇偉大的文章中,泰迪·科克(Teddy Koker)再次展示了演算法交易策略的發展之路: 研究優先應用 pandas 回溯測試,然後使用 backtrader 榮譽!!! 該帖子可以在以下位置找到: 泰迪·科克(Teddy Koker)給我留言,問我是否可以評論 backtrader的用法。