Backtrader按日線交易

  |  

似乎在世界某個地方有一種权益(Interest)可以總結如下:

  • 使用每日柱線引入訂單,但使用開盤價

這來自工單#105订单执行逻辑与当前数据#101动态投注计算中的對話

backtrader 嘗試盡可能保持現實,並且在處理每日柱線時適用以下前提:

  • 當每日柱被評估時,柱線已經結束

這是有道理的,因為所有價格(open/high/low/close)元件都是已知的。實際上,當價格已知時,允許對open 價格採取行動似乎是不合邏輯的 close

明顯的方法是使用日內數據並輸入開盤價何時已知。但日內數據似乎並不那麼普遍。

這就是將篩選器添加到 data feed 可以提供説明的地方。具有以下特性的過濾器:

  • 將每日數據轉換為類似日內的數據

起泡的藤壺!!!好奇的讀者會立即指出,例如Minutes 向上採樣是 Days 合乎邏輯的並且有效,但是向下採樣 DaysMinutes 是無法完成的。

這是100%正確的。下面介紹的篩檢程式不會嘗試這一點,而是一個謙卑而簡單的目標:

  • 將每日酒吧分成兩部分

    1. 只有開盤價而沒有 volume

    2. 第 2 柱,它是常規每日柱的副本

這仍然可以作為一種合乎邏輯的方法:

  • 看到開盤價后,交易者可以採取行動

  • 訂單在當天的其餘時間內匹配(實際上可能會匹配也可能不匹配,具體取決於執行類型和價格約束)

完整代碼如下所示。讓我們看一個示例運行,其中包含每日柱的255 已知數據:

$ ./daysteps.py --data ../../datas/2006-day-001.txt

輸出:

Calls,Len Strat,Len Data,Datetime,Open,High,Low,Close,Volume,OpenInterest
0001,0001,0001,2006-01-02T23:59:59,3578.73,3578.73,3578.73,3578.73,0.00,0.00
- I could issue a buy order during the Opening
0002,0001,0001,2006-01-02T23:59:59,3578.73,3605.95,3578.73,3604.33,0.00,0.00
0003,0002,0002,2006-01-03T23:59:59,3604.08,3604.08,3604.08,3604.08,0.00,0.00
- I could issue a buy order during the Opening
0004,0002,0002,2006-01-03T23:59:59,3604.08,3638.42,3601.84,3614.34,0.00,0.00
0005,0003,0003,2006-01-04T23:59:59,3615.23,3615.23,3615.23,3615.23,0.00,0.00
- I could issue a buy order during the Opening
0006,0003,0003,2006-01-04T23:59:59,3615.23,3652.46,3615.23,3652.46,0.00,0.00
...
...
0505,0253,0253,2006-12-27T23:59:59,4079.70,4079.70,4079.70,4079.70,0.00,0.00
- I could issue a buy order during the Opening
0506,0253,0253,2006-12-27T23:59:59,4079.70,4134.86,4079.70,4134.86,0.00,0.00
0507,0254,0254,2006-12-28T23:59:59,4137.44,4137.44,4137.44,4137.44,0.00,0.00
- I could issue a buy order during the Opening
0508,0254,0254,2006-12-28T23:59:59,4137.44,4142.06,4125.14,4130.66,0.00,0.00
0509,0255,0255,2006-12-29T23:59:59,4130.12,4130.12,4130.12,4130.12,0.00,0.00
- I could issue a buy order during the Opening
0510,0255,0255,2006-12-29T23:59:59,4130.12,4142.01,4119.94,4119.94,0.00,0.00

將發生以下情況:

  • next 稱為: 510 times255 x 2

  • len策略和數據的總數255達到 ,這是預期的:數據只有那麼多柱

  • 每當len 數據增加時,4個價格成分具有相同的值, open 即價格

    這裡列印出一個註釋,以表明在這個開放階段可以採取行動,例如購買。

有效:

  • 每日 data feed 每天重播2個步驟,可以選擇在價格組成部分和其他價格組成部分之間 open 採取行動

該篩選器將添加到下一版本中的預設 backtrader 分發版中。

包含篩選器的範例代碼。

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import argparse
from datetime import datetime, time

import backtrader as bt


class DayStepsFilter(object):
    def __init__(self, data):
        self.pendingbar = None

    def __call__(self, data):
        # Make a copy of the new bar and remove it from stream
        newbar = [data.lines[i][0] for i in range(data.size())]
        data.backwards()  # remove the copied bar from stream

        openbar = newbar[:]  # Make an open only bar
        o = newbar[data.Open]
        for field_idx in [data.High, data.Low, data.Close]:
            openbar[field_idx] = o

        # Nullify Volume/OpenInteres at the open
        openbar[data.Volume] = 0.0
        openbar[data.OpenInterest] = 0.0

        # Overwrite the new data bar with our pending data - except start point
        if self.pendingbar is not None:
            data._updatebar(self.pendingbar)

        self.pendingbar = newbar  # update the pending bar to the new bar
        data._add2stack(openbar)  # Add the openbar to the stack for processing

        return False  # the length of the stream was not changed

    def last(self, data):
        '''Called when the data is no longer producing bars
        Can be called multiple times. It has the chance to (for example)
        produce extra bars'''
        if self.pendingbar is not None:
            data.backwards()  # remove delivered open bar
            data._add2stack(self.pendingbar)  # add remaining
            self.pendingbar = None  # No further action
            return True  # something delivered

        return False  # nothing delivered here


class St(bt.Strategy):
    params = ()

    def __init__(self):
        pass

    def start(self):
        self.callcounter = 0
        txtfields = list()
        txtfields.append('Calls')
        txtfields.append('Len Strat')
        txtfields.append('Len Data')
        txtfields.append('Datetime')
        txtfields.append('Open')
        txtfields.append('High')
        txtfields.append('Low')
        txtfields.append('Close')
        txtfields.append('Volume')
        txtfields.append('OpenInterest')
        print(','.join(txtfields))

        self.lcontrol = 0

    def next(self):
        self.callcounter += 1

        txtfields = list()
        txtfields.append('%04d' % self.callcounter)
        txtfields.append('%04d' % len(self))
        txtfields.append('%04d' % len(self.data0))
        txtfields.append(self.data.datetime.datetime(0).isoformat())
        txtfields.append('%.2f' % self.data0.open[0])
        txtfields.append('%.2f' % self.data0.high[0])
        txtfields.append('%.2f' % self.data0.low[0])
        txtfields.append('%.2f' % self.data0.close[0])
        txtfields.append('%.2f' % self.data0.volume[0])
        txtfields.append('%.2f' % self.data0.openinterest[0])
        print(','.join(txtfields))

        if len(self.data) > self.lcontrol:
            print('- I could issue a buy order during the Opening')

        self.lcontrol = len(self.data)


def runstrat():
    args = parse_args()

    cerebro = bt.Cerebro()
    data = bt.feeds.BacktraderCSVData(dataname=args.data)

    data.addfilter(DayStepsFilter)
    cerebro.adddata(data)

    cerebro.addstrategy(St)

    cerebro.run(stdstats=False, runonce=False, preload=False)
    if args.plot:
        cerebro.plot(style='bar')


def parse_args():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        description='Sample for pivot point and cross plotting')

    parser.add_argument('--data', required=False,
                        default='../../datas/2005-2006-day-001.txt',
                        help='Data to be read in')

    parser.add_argument('--plot', required=False, action='store_true',
                        help=('Plot the result'))

    return parser.parse_args()


if __name__ == '__main__':
    runstrat()

推薦閱讀

相關文章

Backtrader跨越數位

《backtrader》的發佈1.9.27.105糾正了一個疏忽。這是一個疏忽,因為拼圖的所有部分都已到位,但啟動並不是在所有角落都進行的。 該機制使用一個名為的屬性_mindatas,因此讓我們將其稱為: mindatas。 社區問了這個問題,答案並不是很到位。

Backtrader期貨補償與現貨補償

版本1.9.32.116 增加了對社區中呈現的有趣用例 的支援 以期貨開始交易,包括實物交割 讓一個指標告訴你一些事情 如果需要, close 現貨價格操作,有效地取消實物交割,無論是為了接收貨物還是為了必須交付貨物(並希望獲利)來頭寸。

Backtrader教程:分析儀 - PyFolio

注意 從(至少)2017-07-25pyfolio 開始,API已更改,不再 create_full_tear_sheet 具有 gross_lev 作為命名參數的參數。

Backtrader多數據範例

社區中的幾個主題似乎以如何跟蹤訂單為導向,特別是當幾個data feeds在起作用時,還包括當多個訂單一起工作時,

Backtrader信貸利息

在某些情況下,真實經紀人的現金金額可能會減少,因為資產操作包括利率。例子: 賣空股票 交易所買賣基金包括多頭和空頭 這意味著不僅交易構成了系統的盈利能力,因為信貸上的利息在帳戶上佔有一席之地。 為了涵蓋這種情況, backtrader 包括(從發佈1.8.8.96開始)功能來考慮這一點。

Backtrader教程:數據饋送 - 擴展 (Extending DataFeed)

GitHub 中的問題實際上是在推動文檔部分的完成,或者説明我瞭解我是否backtrader 具有我從一開始就設想的易用性和靈活性以及在此過程中做出的決定。 在本例中為問題 #9。

Backtrader教程:日誌記錄 - 編寫器

將以下內容寫出到流中: csv 流,

Backtrader教程:安裝

要求和版本 backtrader 是獨立的,沒有外部依賴關係(除非要繪圖) 基本要求是: Python 2.7 Python 3.2 / 3.3/ 3.4 / 3.5 pypy/pypy3 如果需要繪圖,則其他要求: Matplotlib >= 1.4.

Backtrader數據多時間幀

有時投資決策是使用不同的時間框架做出的: 每周評估趨勢 每天執行條目 或者5分鐘對60分鐘。 這意味著需要將多個時間幀的數據組合在 backtrader 中以支援此類組合。 對它的本機支持已經內置。

Backtrader按日線交易

似乎在世界某個地方有一種权益(Interest)可以總結如下: 使用每日柱線引入訂單,但使用開盤價 這來自工單#105订单执行逻辑与当前数据和#101动态投注计算中的對話 backtrader 嘗試盡可能保持現實,並且在處理每日柱線時適用以下前提: 當每日柱被評估時,柱線已經結束 這是有道理的,