Backtrader教程:经纪人 - 开仓作弊

  |  

“发布”1.9.44.116 添加了对 Cheat-On-Open的支持。这似乎是那些全力以赴的人的需求功能,他们在酒吧 close 后进行了计算,但希望与 open 价格相匹配。

当开盘价跳空(上涨或下跌,取决于是否buysell有效)并且现金不足以进行全面运营时,这样的用例就会失败。这将强制代理拒绝该操作。

尽管人们可以尝试使用正[1] 指数方法展望未来,但这需要预加载并不总是可用的数据。

模式:

cerebro = bt.Cerebro(cheat_on_open=True)

这:

  • 激活系统中调用策略next_open中的方法的额外循环, nextstart_open 以及 prenext_open

    已经决定增加一系列方法,以便在常规方法之间明确区分,这些方法的运作依据是所审查的价格不再可用,未来是未知的,并且操作处于作弊模式。

    这也避免了对常规next 方法的 2 次调用。

在方法中xxx_open,以下内容true

  • 指针尚未重新计算,并保持在等效xxx常规方法中上一个周期中last的值

  • 经纪人尚未评估新周期的挂单,可以引入新订单,如果可能的话,将对其进行评估。

请注意:

  • Cerebro 还有一个 broker_coo (缺省: True)参数,告诉 cerebro ,如果 cheat-on-open 已经启动,如果可能的话,它应该尝试在代理中启动它。

    模拟代理有一个名为:coo 的参数和一个将其设置为 set_coo

尝试作弊open

下面的示例具有具有 2 种不同行为的策略:

  • 如果作弊openTrue,则只能从next_open

  • 如果作弊openFalse,则只能从next

在这两种情况下,匹配的价格必须相同

  • 如果没有作弊,订单将在前一天结束时发出,并将与下一个传入价格(即价格)open 匹配

  • 如果作弊,订单将在运行的同一天发出。由于订单是在经纪人评估订单之前发出的,因此它也将与下一个传入价格(价格)open 匹配。

    第二种情况允许计算全押策略的确切赌注,因为可以直接访问当前open 价格。

在这两种情况下

  • 目前 openclose 价格将从打印自 next

定期运行:

$ ./cheat-on-open.py --cerebro cheat_on_open=False

...
2005-04-07 next, open 3073.4 close 3090.72
2005-04-08 next, open 3092.07 close 3088.92
Strat Len 68 2005-04-08 Send Buy, fromopen False, close 3088.92
2005-04-11 Buy Executed at price 3088.47
2005-04-11 next, open 3088.47 close 3080.6
2005-04-12 next, open 3080.42 close 3065.18
...

顺序:

  • 发表于 2005-04-08 之后 close

  • 运行于 2005-04-11open 价格 3088.47

作弊运行:

$ ./cheat-on-open.py --cerebro cheat_on_open=True

...
2005-04-07 next, open 3073.4 close 3090.72
2005-04-08 next, open 3092.07 close 3088.92
2005-04-11 Send Buy, fromopen True, close 3080.6
2005-04-11 Buy Executed at price 3088.47
2005-04-11 next, open 3088.47 close 3080.6
2005-04-12 next, open 3080.42 close 3065.18
...

顺序:

  • 发表于 2005-04-11 之前 open

  • 运行于 2005-04-11open 价格 3088.47

图表上显示的总体结果也是相同的。

结论

open作弊允许在open例如可以精确计算全力以赴场景的赌注。

示例用法

$ ./cheat-on-open.py --help
usage: cheat-on-open.py [-h] [--data0 DATA0] [--fromdate FROMDATE]
                        [--todate TODATE] [--cerebro kwargs] [--broker kwargs]
                        [--sizer kwargs] [--strat kwargs] [--plot [kwargs]]

Cheat-On-Open Sample

optional arguments:
  -h, --help           show this help message and exit
  --data0 DATA0        Data to read in (default:
                       ../../datas/2005-2006-day-001.txt)
  --fromdate FROMDATE  Date[time] in YYYY-MM-DD[THH:MM:SS] format (default: )
  --todate TODATE      Date[time] in YYYY-MM-DD[THH:MM:SS] format (default: )
  --cerebro kwargs     kwargs in key=value format (default: )
  --broker kwargs      kwargs in key=value format (default: )
  --sizer kwargs       kwargs in key=value format (default: )
  --strat kwargs       kwargs in key=value format (default: )
  --plot [kwargs]      kwargs in key=value format (default: )

示例源

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import argparse
import datetime

import backtrader as bt


class St(bt.Strategy):
    params = dict(
        periods=[10, 30],
        matype=bt.ind.SMA,
    )

    def __init__(self):
        self.cheating = self.cerebro.p.cheat_on_open
        mas = [self.p.matype(period=x) for x in self.p.periods]
        self.signal = bt.ind.CrossOver(*mas)
        self.order = None

    def notify_order(self, order):
        if order.status != order.Completed:
            return

        self.order = None
        print('{} {} Executed at price {}'.format(
            bt.num2date(order.executed.dt).date(),
            'Buy' * order.isbuy() or 'Sell', order.executed.price)
        )

    def operate(self, fromopen):
        if self.order is not None:
            return
        if self.position:
            if self.signal < 0:
                self.order = self.close()
        elif self.signal > 0:
            print('{} Send Buy, fromopen {}, close {}'.format(
                self.data.datetime.date(),
                fromopen, self.data.close[0])
            )
            self.order = self.buy()

    def next(self):
        print('{} next, open {} close {}'.format(
            self.data.datetime.date(),
            self.data.open[0], self.data.close[0])
        )

        if self.cheating:
            return
        self.operate(fromopen=False)

    def next_open(self):
        if not self.cheating:
            return
        self.operate(fromopen=True)


def runstrat(args=None):
    args = parse_args(args)

    cerebro = bt.Cerebro()

    # Data feed kwargs
    kwargs = dict()

    # Parse from/to-date
    dtfmt, tmfmt = '%Y-%m-%d', 'T%H:%M:%S'
    for a, d in ((getattr(args, x), x) for x in ['fromdate', 'todate']):
        if a:
            strpfmt = dtfmt + tmfmt * ('T' in a)
            kwargs[d] = datetime.datetime.strptime(a, strpfmt)

    # Data feed
    data0 = bt.feeds.BacktraderCSVData(dataname=args.data0, **kwargs)
    cerebro.adddata(data0)

    # Broker
    cerebro.broker = bt.brokers.BackBroker(**eval('dict(' + args.broker + ')'))

    # Sizer
    cerebro.addsizer(bt.sizers.FixedSize, **eval('dict(' + args.sizer + ')'))

    # Strategy
    cerebro.addstrategy(St, **eval('dict(' + args.strat + ')'))

    # Execute
    cerebro.run(**eval('dict(' + args.cerebro + ')'))

    if args.plot:  # Plot if requested to
        cerebro.plot(**eval('dict(' + args.plot + ')'))


def parse_args(pargs=None):
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        description=(
            'Cheat-On-Open Sample'
        )
    )

    parser.add_argument('--data0', default='../../datas/2005-2006-day-001.txt',
                        required=False, help='Data to read in')

    # Defaults for dates
    parser.add_argument('--fromdate', required=False, default='',
                        help='Date[time] in YYYY-MM-DD[THH:MM:SS] format')

    parser.add_argument('--todate', required=False, default='',
                        help='Date[time] in YYYY-MM-DD[THH:MM:SS] format')

    parser.add_argument('--cerebro', required=False, default='',
                        metavar='kwargs', help='kwargs in key=value format')

    parser.add_argument('--broker', required=False, default='',
                        metavar='kwargs', help='kwargs in key=value format')

    parser.add_argument('--sizer', required=False, default='',
                        metavar='kwargs', help='kwargs in key=value format')

    parser.add_argument('--strat', required=False, default='',
                        metavar='kwargs', help='kwargs in key=value format')

    parser.add_argument('--plot', required=False, default='',
                        nargs='?', const='{}',
                        metavar='kwargs', help='kwargs in key=value format')

    return parser.parse_args(pargs)


if __name__ == '__main__':
    runstrat()

推荐阅读

相关文章

Backtrader对逐笔报价数据重新采样

backtrader 已经可以从分钟数据中重新采样。接受价格变动数据不是问题,只需将 4 个常用字段(open、 high、 low、 close)设置为价格变动值。 但是传递要重新采样的逐笔报价数据再次生成相同的数据。作为或版本 1.1.11.88,情况已不再如此。

Backtrader教程:指针 - 开发

如果必须开发任何东西(除了一个或多个获胜策略之外),那么这个东西就是一个自定义指针。 根据作者的说法,平台内的这种开发很容易。 需要满足以下条件: 从指针派生的类(直接或从现有的子类派生) 定义它将保持lines 指针必须至少具有 1 line。

Backtrader教程:日志记录 - 编写器

将以下内容写出到流中: csv 流,

Backtrader教程:数据馈送 - 扩展(Extending DataFeed)

GitHub 中的问题实际上是在推动文档部分的完成,或者説明我了解我是否backtrader 具有我从一开始就设想的易用性和灵活性以及在此过程中做出的决定。 在本例中为问题 #9。

Backtrader跨越数字

《backtrader》的发布1.9.27.105纠正了一个疏忽。这是一个疏忽,因为拼图的所有部分都已到位,但启动并不是在所有角落都进行的。 该机制使用一个名为的属性_mindatas,因此让我们将其称为: mindatas。 社区问了这个问题,答案并不是很到位。

Backtraderta-lib 集成

即使 backtrader 提供了已经 high 数量的内置指针,并且开发指针主要是定义输入,输出和以自然的方式编写公式的问题,有些人也希望使用TA-LIB。

Backtrader蟒蛇隐藏的力量3

Last,但并非最不重要的一点是,在这个系列中,关于如何在 backtrader 中使用Python的隐藏功能是一些神奇变量是如何出现的。

Backtrader教程:数据馈送 - 熊猫

注意 pandas 并且必须安装其依赖项 支持Pandas Dataframes似乎受到很多人的关注,他们依赖于已经可用的解析代码来分析不同的数据源(包括CSV)和Pandas提供的其他功能。 数据馈送的重要声明。 注意 这些只是 声明。不要盲目拷贝此代码。

Backtrader教程:分析仪 - PyFolio

注意 从(至少)2017-07-25pyfolio 开始,API已更改,不再 create_full_tear_sheet 具有 gross_lev 作为命名参数的参数。

Backtrader动量策略

在另一篇伟大的文章中,泰迪·科克(Teddy Koker)再次展示了算法交易策略的发展之路: 研究优先应用 pandas 回溯测试,然后使用 backtrader 荣誉!!! 该帖子可以在以下位置找到: 泰迪·科克(Teddy Koker)给我留言,问我是否可以评论 backtrader的用法。