Backtrader教程:經紀人 - 開倉作弊

  |  

“發佈”1.9.44.116 添加了對 Cheat-On-Open的支援。這似乎是那些全力以赴的人的需求功能,他們在酒吧 close 后進行了計算,但希望與 open 價格相匹配。

當開盤價跳空(上漲或下跌,取決於是否buysell有效)並且現金不足以進行全面運營時,這樣的用例就會失敗。這將強制代理拒絕該操作。

儘管人們可以嘗試使用正[1] 指數方法展望未來,但這需要預載入並不總是可用的數據。

模式:

cerebro = bt.Cerebro(cheat_on_open=True)

這:

  • 激活系統中調用策略next_open中的方法的額外迴圈, nextstart_open 以及 prenext_open

    已經決定增加一系列方法,以便在常規方法之間明確區分,這些方法的運作依據是所審查的價格不再可用,未來是未知的,並且操作處於作弊模式。

    這也避免了對常規next 方法的 2 次調用。

在方法中xxx_open,以下內容true

  • 指標尚未重新計算,並保持在等效xxx常規方法中上一個週期中last的值

  • 經紀人尚未評估新週期的掛單,可以引入新訂單,如果可能的話,將對其進行評估。

請注意:

  • Cerebro 還有一個 broker_coo (預設: True)參數,告訴 cerebro ,如果 cheat-on-open 已經啟動,如果可能的話,它應該嘗試在代理中啟動它。

    類比代理有一個名為:coo 的參數和一個將其設置為 set_coo

嘗試作弊open

下面的示例具有具有 2 種不同行為的策略:

  • 如果作弊openTrue,則只能從next_open

  • 如果作弊openFalse,則只能從next

在這兩種情況下,匹配的價格必須相同

  • 如果沒有作弊,訂單將在前一天結束時發出,並將與下一個傳入價格(即價格)open 匹配

  • 如果作弊,訂單將在執行的同一天發出。由於訂單是在經紀人評估訂單之前發出的,因此它也將與下一個傳入價格(價格)open 匹配。

    第二種情況允許計算全押策略的確切賭注,因為可以直接訪問當前open 價格。

在這兩種情況下

  • 目前 openclose 價格將從列印自 next

定期執行:

$ ./cheat-on-open.py --cerebro cheat_on_open=False

...
2005-04-07 next, open 3073.4 close 3090.72
2005-04-08 next, open 3092.07 close 3088.92
Strat Len 68 2005-04-08 Send Buy, fromopen False, close 3088.92
2005-04-11 Buy Executed at price 3088.47
2005-04-11 next, open 3088.47 close 3080.6
2005-04-12 next, open 3080.42 close 3065.18
...

順序:

  • 發表於 2005-04-08 之後 close

  • 執行於 2005-04-11open 價格 3088.47

作弊執行:

$ ./cheat-on-open.py --cerebro cheat_on_open=True

...
2005-04-07 next, open 3073.4 close 3090.72
2005-04-08 next, open 3092.07 close 3088.92
2005-04-11 Send Buy, fromopen True, close 3080.6
2005-04-11 Buy Executed at price 3088.47
2005-04-11 next, open 3088.47 close 3080.6
2005-04-12 next, open 3080.42 close 3065.18
...

順序:

  • 發表於 2005-04-11 之前 open

  • 執行於 2005-04-11open 價格 3088.47

圖表上顯示的總體結果也是相同的。

結論

open作弊允許在open例如可以精確計算全力以赴場景的賭注。

示例用法

$ ./cheat-on-open.py --help
usage: cheat-on-open.py [-h] [--data0 DATA0] [--fromdate FROMDATE]
                        [--todate TODATE] [--cerebro kwargs] [--broker kwargs]
                        [--sizer kwargs] [--strat kwargs] [--plot [kwargs]]

Cheat-On-Open Sample

optional arguments:
  -h, --help           show this help message and exit
  --data0 DATA0        Data to read in (default:
                       ../../datas/2005-2006-day-001.txt)
  --fromdate FROMDATE  Date[time] in YYYY-MM-DD[THH:MM:SS] format (default: )
  --todate TODATE      Date[time] in YYYY-MM-DD[THH:MM:SS] format (default: )
  --cerebro kwargs     kwargs in key=value format (default: )
  --broker kwargs      kwargs in key=value format (default: )
  --sizer kwargs       kwargs in key=value format (default: )
  --strat kwargs       kwargs in key=value format (default: )
  --plot [kwargs]      kwargs in key=value format (default: )

示例源

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import argparse
import datetime

import backtrader as bt


class St(bt.Strategy):
    params = dict(
        periods=[10, 30],
        matype=bt.ind.SMA,
    )

    def __init__(self):
        self.cheating = self.cerebro.p.cheat_on_open
        mas = [self.p.matype(period=x) for x in self.p.periods]
        self.signal = bt.ind.CrossOver(*mas)
        self.order = None

    def notify_order(self, order):
        if order.status != order.Completed:
            return

        self.order = None
        print('{} {} Executed at price {}'.format(
            bt.num2date(order.executed.dt).date(),
            'Buy' * order.isbuy() or 'Sell', order.executed.price)
        )

    def operate(self, fromopen):
        if self.order is not None:
            return
        if self.position:
            if self.signal < 0:
                self.order = self.close()
        elif self.signal > 0:
            print('{} Send Buy, fromopen {}, close {}'.format(
                self.data.datetime.date(),
                fromopen, self.data.close[0])
            )
            self.order = self.buy()

    def next(self):
        print('{} next, open {} close {}'.format(
            self.data.datetime.date(),
            self.data.open[0], self.data.close[0])
        )

        if self.cheating:
            return
        self.operate(fromopen=False)

    def next_open(self):
        if not self.cheating:
            return
        self.operate(fromopen=True)


def runstrat(args=None):
    args = parse_args(args)

    cerebro = bt.Cerebro()

    # Data feed kwargs
    kwargs = dict()

    # Parse from/to-date
    dtfmt, tmfmt = '%Y-%m-%d', 'T%H:%M:%S'
    for a, d in ((getattr(args, x), x) for x in ['fromdate', 'todate']):
        if a:
            strpfmt = dtfmt + tmfmt * ('T' in a)
            kwargs[d] = datetime.datetime.strptime(a, strpfmt)

    # Data feed
    data0 = bt.feeds.BacktraderCSVData(dataname=args.data0, **kwargs)
    cerebro.adddata(data0)

    # Broker
    cerebro.broker = bt.brokers.BackBroker(**eval('dict(' + args.broker + ')'))

    # Sizer
    cerebro.addsizer(bt.sizers.FixedSize, **eval('dict(' + args.sizer + ')'))

    # Strategy
    cerebro.addstrategy(St, **eval('dict(' + args.strat + ')'))

    # Execute
    cerebro.run(**eval('dict(' + args.cerebro + ')'))

    if args.plot:  # Plot if requested to
        cerebro.plot(**eval('dict(' + args.plot + ')'))


def parse_args(pargs=None):
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        description=(
            'Cheat-On-Open Sample'
        )
    )

    parser.add_argument('--data0', default='../../datas/2005-2006-day-001.txt',
                        required=False, help='Data to read in')

    # Defaults for dates
    parser.add_argument('--fromdate', required=False, default='',
                        help='Date[time] in YYYY-MM-DD[THH:MM:SS] format')

    parser.add_argument('--todate', required=False, default='',
                        help='Date[time] in YYYY-MM-DD[THH:MM:SS] format')

    parser.add_argument('--cerebro', required=False, default='',
                        metavar='kwargs', help='kwargs in key=value format')

    parser.add_argument('--broker', required=False, default='',
                        metavar='kwargs', help='kwargs in key=value format')

    parser.add_argument('--sizer', required=False, default='',
                        metavar='kwargs', help='kwargs in key=value format')

    parser.add_argument('--strat', required=False, default='',
                        metavar='kwargs', help='kwargs in key=value format')

    parser.add_argument('--plot', required=False, default='',
                        nargs='?', const='{}',
                        metavar='kwargs', help='kwargs in key=value format')

    return parser.parse_args(pargs)


if __name__ == '__main__':
    runstrat()

推薦閱讀

相關文章

Backtrader按日線交易

似乎在世界某個地方有一種权益(Interest)可以總結如下: 使用每日柱線引入訂單,但使用開盤價 這來自工單#105订单执行逻辑与当前数据和#101动态投注计算中的對話 backtrader 嘗試盡可能保持現實,並且在處理每日柱線時適用以下前提: 當每日柱被評估時,柱線已經結束 這是有道理的,

Backtrader教程:指標 - 開發

如果必須開發任何東西(除了一個或多個獲勝策略之外),那麼這個東西就是一個自定義指標。 根據作者的說法,平臺內的這種開發很容易。 需要滿足以下條件: 從指標派生的類(直接或從現有的子類派生) 定義它將保持lines 指標必須至少具有 1 line。

Backtrader教程:日誌記錄 - 編寫器

將以下內容寫出到流中: csv 流,

Backtrader股票篩選

在尋找其他一些東西時,我在StackOverlow家族網站之一上遇到了一個問題:Quantitative Finance aka Quant StackExchange。問題: 它被標記為Python,因此值得一看的是 backtrader 是否能夠勝任這項任務。 分析儀本身 該問題似乎適合用於簡單的分析器。

Backtrader教程:數據饋送 - 展期交割

並非每個供應商都為可以交易的工具提供連續的未來。有時提供的數據是仍然有效的到期日期的數據,即:仍在交易的日期 這在回溯測試方面並不是很有幫助,因為數據分散在幾個不同的儀器上,這些儀器另外...時間重疊。 能夠正確地將這些儀器的數據從過去連接到連續的流中,可以減輕疼痛。

Backtrader迪克森移動平均線

下面的reddit帖子以自己的作者Nathan Dickson(reddit句柄)命名了這個平均值Dickson移動平均線。 在一次對reddit Algotrading 的定期訪問中,我發現了一篇關於移動平均線的帖子,該移動平均線試圖模仿Jurik移動平均線(又名JMA)。

Backtrader教程:過濾器 - 參考

工作階段篩檢程式 類 backtrader.filters。

Backtrader教程:Cerebro - 優化 - 改進

backtrader版本1.8.12.99改進了在多處理過程中管理data feeds和結果的方式。

Backtrader教程:數據饋送 - 熊貓

注意 pandas 並且必須安裝其依賴項 支援Pandas Dataframes似乎受到很多人的關注,他們依賴於已經可用的解析代碼來分析不同的數據源(包括CSV)和Pandas提供的其他功能。 數據饋送的重要聲明。 注意 這些只是 聲明。不要盲目複製此代碼。

Backtrader信貸利息

在某些情況下,真實經紀人的現金金額可能會減少,因為資產操作包括利率。例子: 賣空股票 交易所買賣基金包括多頭和空頭 這意味著不僅交易構成了系統的盈利能力,因為信貸上的利息在帳戶上佔有一席之地。 為了涵蓋這種情況, backtrader 包括(從發佈1.8.8.96開始)功能來考慮這一點。