它已成为新闻。DJI正在创下历史新高,已经连续10个上涨日和9个历史高点。例如,请参阅:
当然,许多人已经注意到道琼斯指数处于这样的状态,这篇文章只是告诉我们它正在成为主流。但出现了一些问题:
-
这是正常的还是非凡的?
-
之后会发生什么?
让我们通过制作一个分析器来启动 backtrader 来回答问题:分析情况并回答问题(请参阅下面的代码)
我们的范例数据包含5923
交易时段。让我们看看当前的连胜适合在哪里。
这是正常的还是非凡的?
运行我们的代码表明,10
连续几天至少是非凡的,如果不是非凡的话:
$ ./updaystreaks.py --data 099I-DJI --upstreak hilo=True count rank upstreak upleg upleg % drawdown rel drawdown 1987-01-02 1 1 13 219.069946 0.116193 0.017616 0.171407 2017-02-09 2 2 12 822.109375 0.041074 0.001875 0.047548 1970-11-19 3 2 12 66.900024 0.088986 0.010321 0.127055 1929-06-20 4 2 12 32.000000 0.101716 0.031134 0.340625 1991-12-18 5 3 11 315.100098 0.109167 0.011113 0.113614 1955-01-18 6 3 11 22.200012 0.057290 0.014334 0.265765 2017-07-25 7 4 10 622.289062 0.028949 NaN NaN 2013-03-01 8 4 10 488.959961 0.034801 0.008102 0.240919 1996-11-04 9 4 10 348.839844 0.058148 0.004792 0.087605 1973-07-16 10 4 10 53.600037 0.060695 0.095935 1.686565 1959-11-17 11 4 10 31.599976 0.049945 0.011216 0.237342 1959-06-24 12 4 10 36.200012 0.057680 0.020649 0.381215 1955-08-23 13 4 10 25.400024 0.056344 0.008772 0.165353 1933-03-03 14 4 10 12.600002 0.250497 0.142415 0.730158 1920-12-29 15 4 10 8.099998 0.119118 0.022339 0.209876 2016-07-08 16 5 9 778.378906 0.043688 0.016552 0.396003 1996-05-08 17 5 9 334.369629 0.061755 0.002442 0.041990 1989-07-03 18 5 9 141.890137 0.058804 0.007179 0.129677 1968-04-23 19 5 9 38.000000 0.043123 0.070535 1.736842 1967-04-13 20 5 9 49.700012 0.059061 0.006593 0.118713 1967-01-03 21 5 9 55.799988 0.071603 0.006321 0.094982 1965-01-22 22 5 9 18.500000 0.020838 0.031326 1.540541 1964-03-06 23 5 9 19.600037 0.024506 0.016127 0.678570 1955-06-15 24 5 9 12.399994 0.028343 0.005537 0.201613 1955-04-05 25 5 9 16.299988 0.039553 0.010465 0.276074 1954-09-01 26 5 9 18.599976 0.055822 0.009325 0.177419 1945-04-06 27 5 9 9.000000 0.058140 0.008526 0.155555 1929-02-18 28 5 9 21.800018 0.072812 0.086005 1.279815 1921-10-18 29 5 9 4.300003 0.061871 0.008130 0.139536
目前的连胜尚未结束,排名(并列)在第 4位。要注意:
-
当连胜为 10 天或更长时间时,以 % 为单位的上挽是最小的
-
连续9天上升的三(3)天在百分比上略小,可追溯到1955年,1964年和1965年
-
今年又一次连续12天排名第二
之后会发生什么?
即使表格已经显示了连胜结束后的回撤和相对回撤(从连胜开始,因此可以>100%),这个问题在视觉上得到更好的回答。
图表很快显示:
- 如此长的连胜似乎表明实力,没有大的回撤,这是真正的预期,因为反应
但是等等!!!
排名第一,也排名第二,我们有非凡的日期:
count rank upstreak upleg upleg % drawdown rel drawdown 1987-01-02 1 1 13 219.069946 0.116193 0.017616 0.171407 2017-02-09 2 2 12 822.109375 0.041074 0.001875 0.047548 1970-11-19 3 2 12 66.900024 0.088986 0.010321 0.127055 1929-06-20 4 2 12 32.000000 0.101716 0.031134 0.340625 ...
的确,因为1987
1929
后来真的有非常大的熊腿。但不是像统计数据所示的连胜之后立即:相对回撤没有超过100%,因此在这些连胜结束后出现了新的高点。
代码
from __future__ import (absolute_import, division, print_function, unicode_literals) import argparse import collections import datetime import itertools import matplotlib.pyplot as plt import pandas as pd import backtrader as bt class UpStreak(bt.Analyzer): params = dict( sep=',', hilo=False, ) def __init__(self): self.upday = bt.ind.UpDayBool() self.curdt = None # streak start date self.incs = dict() # upleg in points self.pincs = dict() # upleg in percentage self.close0 = dict() # starting price for upleg self.peaks = collections.deque() # endng price for upleg self.ddown = dict() # absolute drawdowns self.ddownrel = dict() # relative drawdown (% of upleg retraced) self.rets = collections.defaultdict(int) # holds main results def next(self): curclose = self.data.close[0] lastclose = self.data.close[-1] self.peaks.append((None, None)) while True: dt, peak = self.peaks.popleft() if dt is None: break # all elements seen if peak > curclose: # peak not overdone, update drawdown ddown = 1.0 - curclose / peak self.ddown[dt] = max(self.ddown[dt], ddown) self.peaks.append((dt, peak)) # not done yet inc = self.incs[dt] fall = peak - curclose ddownrel = fall / inc self.ddownrel[dt] = max(self.ddownrel[dt], ddownrel) if self.upday: if self.curdt is None: # streak begins self.curdt = self.strategy.datetime.date() if self.p.hilo: lastclose = self.data.low[-1] self.close0[self.curdt] = lastclose self.incs[self.curdt] = inc = curclose - self.close0[self.curdt] self.pincs[self.curdt] = inc / self.close0[self.curdt] self.rets[self.curdt] += 1 # update current streak else: if self.curdt is not None: # streak ends if self.p.hilo: lastclose = self.data.high[-1] inc = self.incs[self.curdt] fall = lastclose - curclose self.ddownrel[self.curdt] = fall / inc self.ddown[self.curdt] = 1.0 - curclose / lastclose self.peaks.append((self.curdt, lastclose)) self.curdt = None def stop(self): s = sorted( self.rets.items(), reverse=True, key=lambda item: (item[1], item[0]) ) # keep it in dict format self.rets = collections.OrderedDict(s) self.s = collections.OrderedDict(s) self.headers = [ 'date', 'count', 'rank', 'upstreak', 'upleg', 'upleg %', 'drawdown', 'rel drawdown', ] i = 0 count = itertools.count(1) last = float('inf') for dt, streak in self.s.items(): if streak < last: i += 1 last = streak ddown = self.ddown.get(dt, None) ddownrel = self.ddownrel.get(dt, None) inc = self.incs.get(dt, None) pinc = self.pincs.get(dt, None) self.s[dt] = [ next(count), i, streak, inc, pinc, ddown, ddownrel ] def get_dataframe(self): return pd.DataFrame.from_items( self.s.items(), orient='index', columns=self.headers[1:], # skip index ) def print_ranking(self): i = 0 last = float('inf') print(self.p.sep.join(self.headers)) for dt, items in self.s.items(): print( self.p.sep.join( str(x) for x in itertools.chain([dt], items) ) ) def runstrat(args=None): args = parse_args(args) cerebro = bt.Cerebro() kwargs = dict() # Data feed kwargs # Parse from/to-date dtfmt, tmfmt = '%Y-%m-%d', 'T%H:%M:%S' for a, d in ((getattr(args, x), x) for x in ['fromdate', 'todate']): if a: strpfmt = dtfmt + tmfmt * ('T' in a) kwargs[d] = datetime.datetime.strptime(a, strpfmt) fromdate = kwargs.get('fromdate', datetime.date.min) store = bt.stores.VChartFile() data = store.getdata(dataname=args.data, **kwargs) cerebro.adddata(data) cerebro.addanalyzer(UpStreak, **eval('dict(' + args.upstreak + ')')) result = cerebro.run() st0 = result[0] a = st0.analyzers.upstreak # Plot some things # pd.set_option('display.max_columns', 500) pd.set_option('display.expand_frame_repr', False) df = a.get_dataframe() up = df['upstreak'] up9 = df[up >= 9] print(up9) up7 = df[up >= 7] x = up7['upstreak'] y = up7['rel drawdown'] * 100.0 plt.scatter(x, y) plt.ylabel('% Relative Drawdown') plt.xlabel('Updays streak') plt.title('DJI Relative Drawdown after N consecutive UpDays') plt.show() # Plot some things y = up7['drawdown'] * 100.0 plt.ylabel('% Absolute Drawdown') plt.xlabel('Updays streak') plt.title('DJI Drawdown after N consecutive UpDays') plt.scatter(x, y) plt.show() def parse_args(pargs=None): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, description=( 'UpDayStreaks' ) ) parser.add_argument('--data', default='', required=True, help='Data Ticker') parser.add_argument('--fromdate', required=False, default='', help='Date[time] in YYYY-MM-DD[THH:MM:SS] format') parser.add_argument('--todate', required=False, default='', help='Date[time] in YYYY-MM-DD[THH:MM:SS] format') parser.add_argument('--cerebro', required=False, default='', metavar='kwargs', help='kwargs in key=value format') parser.add_argument('--upstreak', required=False, default='', metavar='kwargs', help='kwargs in key=value format') parser.add_argument('--strat', required=False, default='', metavar='kwargs', help='kwargs in key=value format') parser.add_argument('--plot', required=False, default='', nargs='?', const='{}', metavar='kwargs', help='kwargs in key=value format') return parser.parse_args(pargs) if __name__ == '__main__': runstrat()