Backtrader佣金计划

  |  

发布 backtrader 使用示例使我对缺失的东西有了深刻的了解。对于初学者:

  • 多核优化

  • 佣金:股票与期货

后者向我展示了:

  • 经纪人在计算损益方面做了正确的事情,并为调用策略提供了正确的订单通知

  • 该策略无法访问operations (又名 trades),这是订单开仓和平仓的结果(后者显示损益数字)

  • 绘制的Operation 损益数字是由收集 Observer 的,并且无法访问实际 commission scheme值,因此为 futures-like 操作和 stocks-like 操作呈现相同的损益

显然,需要进行少量的内部返工才能实现:

  • Operation 策略通知

  • Operations 显示正确的损益数据

broker已经拥有所有需要的信息,并且已经将大部分信息塞进了order正在通知创建它的人的信息中strategy。唯一要做出的决定是,是否将broker额外的信息位放入订单中,或者它可以计算自身operations

由于策略已经获得orders 并且将保留在 operations 清单中似乎是很自然的 broker ,因此当订单部分/全部平仓时,只需添加实际的损益,将计算的责任留给 strategy.

反过来,这简化了实际作用,Operations Observer 即观察新关闭 Operation 并记录它。它应该一直扮演的角色。

下面的代码已经过重新设计,不再计算损益数字,而只是关注那些通知的人notify_operation

图表现在反映了现实的损益数字(cashvalue 是现实的)

期货的旧 logging

2006-03-09, BUY CREATE, 3757.59
2006-03-10, BUY EXECUTED, Price: 3754.13, Cost: 2000.00, Comm 2.00
2006-04-11, SELL CREATE, 3788.81
2006-04-12, SELL EXECUTED, Price: 3786.93, Cost: 2000.00, Comm 2.00
2006-04-12, OPERATION PROFIT, GROSS 328.00, NET 324.00
2006-04-20, BUY CREATE, 3860.00
2006-04-21, BUY EXECUTED, Price: 3863.57, Cost: 2000.00, Comm 2.00
2006-04-28, SELL CREATE, 3839.90
2006-05-02, SELL EXECUTED, Price: 3839.24, Cost: 2000.00, Comm 2.00
2006-05-02, OPERATION PROFIT, GROSS -243.30, NET -247.30

期货新 logging

2006-03-09, BUY CREATE, 3757.59
2006-03-10, BUY EXECUTED, Price: 3754.13, Cost: 2000.00, Comm 2.00
2006-04-11, SELL CREATE, 3788.81
2006-04-12, SELL EXECUTED, Price: 3786.93, Cost: 2000.00, Comm 2.00
2006-04-12, OPERATION PROFIT, GROSS 328.00, NET 324.00
2006-04-20, BUY CREATE, 3860.00
2006-04-21, BUY EXECUTED, Price: 3863.57, Cost: 2000.00, Comm 2.00
2006-04-28, SELL CREATE, 3839.90
2006-05-02, SELL EXECUTED, Price: 3839.24, Cost: 2000.00, Comm 2.00
2006-05-02, OPERATION PROFIT, GROSS -243.30, NET -247.30
2006-05-02, BUY CREATE, 3862.24

股票的旧 logging

2006-03-09, BUY CREATE, 3757.59
2006-03-10, BUY EXECUTED, Price: 3754.13, Cost: 3754.13, Comm 18.77
2006-04-11, SELL CREATE, 3788.81
2006-04-12, SELL EXECUTED, Price: 3786.93, Cost: 3786.93, Comm 18.93
2006-04-12, OPERATION PROFIT, GROSS 32.80, NET -4.91
2006-04-20, BUY CREATE, 3860.00
2006-04-21, BUY EXECUTED, Price: 3863.57, Cost: 3863.57, Comm 19.32
2006-04-28, SELL CREATE, 3839.90
2006-05-02, SELL EXECUTED, Price: 3839.24, Cost: 3839.24, Comm 19.20
2006-05-02, OPERATION PROFIT, GROSS -24.33, NET -62.84

股票的新 logging

2006-03-09, BUY CREATE, 3757.59
2006-03-10, BUY EXECUTED, Price: 3754.13, Cost: 3754.13, Comm 18.77
2006-04-11, SELL CREATE, 3788.81
2006-04-12, SELL EXECUTED, Price: 3786.93, Cost: 3786.93, Comm 18.93
2006-04-12, OPERATION PROFIT, GROSS 32.80, NET -4.91
2006-04-20, BUY CREATE, 3860.00
2006-04-21, BUY EXECUTED, Price: 3863.57, Cost: 3863.57, Comm 19.32
2006-04-28, SELL CREATE, 3839.90
2006-05-02, SELL EXECUTED, Price: 3839.24, Cost: 3839.24, Comm 19.20
2006-05-02, OPERATION PROFIT, GROSS -24.33, NET -62.84
2006-05-02, BUY CREATE, 3862.24

和图表(只有新的)。操作和操作之间的区别futures-like现在可以清楚地看到,而不仅仅是在 和valuecash演变stock-like中。

期货佣金

股票佣金

代码

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import backtrader as bt
import backtrader.feeds as btfeeds
import backtrader.indicators as btind


futures_like = True

if futures_like:
    commission, margin, mult = 2.0, 2000.0, 10.0
else:
    commission, margin, mult = 0.005, None, 1


class SMACrossOver(bt.Strategy):
    def log(self, txt, dt=None):
        ''' Logging function fot this strategy'''
        dt = dt or self.datas[0].datetime.date(0)
        print('%s, %s' % (dt.isoformat(), txt))

    def notify(self, order):
        if order.status in [order.Submitted, order.Accepted]:
            # Buy/Sell order submitted/accepted to/by broker - Nothing to do
            return

        # Check if an order has been completed
        # Attention: broker could reject order if not enougth cash
        if order.status in [order.Completed, order.Canceled, order.Margin]:
            if order.isbuy():
                self.log(
                    'BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
                    (order.executed.price,
                     order.executed.value,
                     order.executed.comm))
            else:  # Sell
                self.log('SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
                         (order.executed.price,
                          order.executed.value,
                          order.executed.comm))

    def notify_trade(self, trade):
        if trade.isclosed:
            self.log('TRADE PROFIT, GROSS %.2f, NET %.2f' %
                     (trade.pnl, trade.pnlcomm))

    def __init__(self):
        sma = btind.SMA(self.data)
        # > 0 crossing up / < 0 crossing down
        self.buysell_sig = btind.CrossOver(self.data, sma)

    def next(self):
        if self.buysell_sig > 0:
            self.log('BUY CREATE, %.2f' % self.data.close[0])
            self.buy()  # keep order ref to avoid 2nd orders

        elif self.position and self.buysell_sig < 0:
            self.log('SELL CREATE, %.2f' % self.data.close[0])
            self.sell()


if __name__ == '__main__':
    # Create a cerebro entity
    cerebro = bt.Cerebro()

    # Add a strategy
    cerebro.addstrategy(SMACrossOver)

    # Create a Data Feed
    datapath = ('../../datas/2006-day-001.txt')
    data = bt.feeds.BacktraderCSVData(dataname=datapath)

    # Add the Data Feed to Cerebro
    cerebro.adddata(data)

    # set commission scheme -- CHANGE HERE TO PLAY
    cerebro.broker.setcommission(
        commission=commission, margin=margin, mult=mult)

    # Run over everything
    cerebro.run()

    # Plot the result
    cerebro.plot()

推荐阅读

相关文章

Backtrader教程:观察者 - 参考

基准 backtrader类 .observers.基准() 此 observer 存储策略的回报和参考资产的回报,参考资产是传递到系统的数据之一。

Backtrader期货展期

并非每个供应商都为可以交易的工具提供连续的未来。有时提供的数据是仍然有效的到期日期的数据,即:仍在交易的日期 这在回溯测试方面并不是很有帮助,因为数据分散在几个不同的仪器上,这些仪器另外...时间重叠。 能够正确地将这些仪器的数据从过去连接到连续的流中,可以减轻疼痛。

Backtrader细分佣金计划

不久前,委员会计划的实施进行了重新设计。最重要的是:涉及的部分返工: 保留原始的佣金信息类和行为 打开大门,轻松创建用户定义的佣金 将格式 xx% 作为新佣金方案的默认值,而不是 0.xx(只是一个品味问题),保持行为可配置 扩展委员会概述了基本要素。

Backtrader教程:安装

要求和版本 backtrader 是独立的,没有外部依赖关系(除非要绘图) 基本要求是: Python 2.7 Python 3.2 / 3.3/ 3.4 / 3.5 pypy/pypy3 如果需要绘图,则其他要求: Matplotlib >= 1.4.

BacktraderOCO订单

Release1.9.34.116 将 OCO (又名One Cancel Others)添加到回溯测试武器库中。 注意 这仅在回溯测试中实现,并且还没有针对即时代理的实现 注意 随版本1.9.36.116更新。盈透证券支持 StopTrail和 StopTrailLimit OCO。

Backtrader标杆

backtrader 包括 2 种不同类型的对象,可帮助进行跟踪: Observers Analyzers 工单 #89 是关于添加资产基准测试的。明智的是,人们实际上可能有一个策略,即使积极,也低于简单地跟踪资产所能提供的策略。

Backtrader教程:操作平台

Line 反复运算器 为了参与操作,plaftorm使用 line 反复运算器的概念。它们已经松散地模仿了Python的反复运算器,但实际上与它们无关。 策略和指针是 line 反复运算器。

Backtrader教程:绘图 - 日期范围

该版本1.9.31.x 增加了制作部分绘图的功能。 使用策略实例中保存的完整时间戳数组的索引 或者使用实际datetime.date 或 datetime.datetime 实例来限制必须绘制的内容。 一切都超过标准cerebro.plot。

Backtrader教程:日期时间 - 管理

在 1.5.0 版之前, backtrader 使用直接的方法来进行时间管理,因为数据源计算的任何日期时间都只是按面值使用。 对于任何用户输入也是如此,例如可以提供给任何数据源的参数fromdate (或 sessionstart)的情况 考虑到直接控制冻结的数据源以进行回溯测试,这种方法很好。

Backtrader版本 1.2.1.88

将次要版本号从 1 更改为 2 需要一段时间,但旧的 DataResampler 和 DataReplayer 的弃用导致了这种情况。 readthedocs 的文档有 文档已更新为仅引用现代方法 resampling 和 replaying。