发布 backtrader 使用示例使我对缺失的东西有了深刻的了解。对于初学者:
-
多核优化
-
佣金:股票与期货
后者向我展示了:
-
经纪人在计算损益方面做了正确的事情,并为调用策略提供了正确的订单通知
-
该策略无法访问
operations
(又名trades
),这是订单开仓和平仓的结果(后者显示损益数字) -
绘制的
Operation
损益数字是由收集Observer
的,并且无法访问实际commission scheme
值,因此为futures-like
操作和stocks-like
操作呈现相同的损益
显然,需要进行少量的内部返工才能实现:
-
Operation
策略通知 -
Operations
显示正确的损益数据
broker
已经拥有所有需要的信息,并且已经将大部分信息塞进了order
正在通知创建它的人的信息中strategy
。唯一要做出的决定是,是否将broker
额外的信息位放入订单中,或者它可以计算自身operations
。
由于策略已经获得orders
并且将保留在 operations
清单中似乎是很自然的 broker
,因此当订单部分/全部平仓时,只需添加实际的损益,将计算的责任留给 strategy
.
反过来,这简化了实际作用,Operations Observer
即观察新关闭 Operation
并记录它。它应该一直扮演的角色。
下面的代码已经过重新设计,不再计算损益数字,而只是关注那些通知的人notify_operation
。
图表现在反映了现实的损益数字(cash
和 value
是现实的)
期货的旧 logging :
2006-03-09, BUY CREATE, 3757.59 2006-03-10, BUY EXECUTED, Price: 3754.13, Cost: 2000.00, Comm 2.00 2006-04-11, SELL CREATE, 3788.81 2006-04-12, SELL EXECUTED, Price: 3786.93, Cost: 2000.00, Comm 2.00 2006-04-12, OPERATION PROFIT, GROSS 328.00, NET 324.00 2006-04-20, BUY CREATE, 3860.00 2006-04-21, BUY EXECUTED, Price: 3863.57, Cost: 2000.00, Comm 2.00 2006-04-28, SELL CREATE, 3839.90 2006-05-02, SELL EXECUTED, Price: 3839.24, Cost: 2000.00, Comm 2.00 2006-05-02, OPERATION PROFIT, GROSS -243.30, NET -247.30
期货新 logging :
2006-03-09, BUY CREATE, 3757.59 2006-03-10, BUY EXECUTED, Price: 3754.13, Cost: 2000.00, Comm 2.00 2006-04-11, SELL CREATE, 3788.81 2006-04-12, SELL EXECUTED, Price: 3786.93, Cost: 2000.00, Comm 2.00 2006-04-12, OPERATION PROFIT, GROSS 328.00, NET 324.00 2006-04-20, BUY CREATE, 3860.00 2006-04-21, BUY EXECUTED, Price: 3863.57, Cost: 2000.00, Comm 2.00 2006-04-28, SELL CREATE, 3839.90 2006-05-02, SELL EXECUTED, Price: 3839.24, Cost: 2000.00, Comm 2.00 2006-05-02, OPERATION PROFIT, GROSS -243.30, NET -247.30 2006-05-02, BUY CREATE, 3862.24
股票的旧 logging :
2006-03-09, BUY CREATE, 3757.59 2006-03-10, BUY EXECUTED, Price: 3754.13, Cost: 3754.13, Comm 18.77 2006-04-11, SELL CREATE, 3788.81 2006-04-12, SELL EXECUTED, Price: 3786.93, Cost: 3786.93, Comm 18.93 2006-04-12, OPERATION PROFIT, GROSS 32.80, NET -4.91 2006-04-20, BUY CREATE, 3860.00 2006-04-21, BUY EXECUTED, Price: 3863.57, Cost: 3863.57, Comm 19.32 2006-04-28, SELL CREATE, 3839.90 2006-05-02, SELL EXECUTED, Price: 3839.24, Cost: 3839.24, Comm 19.20 2006-05-02, OPERATION PROFIT, GROSS -24.33, NET -62.84
股票的新 logging :
2006-03-09, BUY CREATE, 3757.59 2006-03-10, BUY EXECUTED, Price: 3754.13, Cost: 3754.13, Comm 18.77 2006-04-11, SELL CREATE, 3788.81 2006-04-12, SELL EXECUTED, Price: 3786.93, Cost: 3786.93, Comm 18.93 2006-04-12, OPERATION PROFIT, GROSS 32.80, NET -4.91 2006-04-20, BUY CREATE, 3860.00 2006-04-21, BUY EXECUTED, Price: 3863.57, Cost: 3863.57, Comm 19.32 2006-04-28, SELL CREATE, 3839.90 2006-05-02, SELL EXECUTED, Price: 3839.24, Cost: 3839.24, Comm 19.20 2006-05-02, OPERATION PROFIT, GROSS -24.33, NET -62.84 2006-05-02, BUY CREATE, 3862.24
和图表(只有新的)。操作和操作之间的区别futures-like
现在可以清楚地看到,而不仅仅是在 和value
的cash
演变stock-like
中。
期货佣金
股票佣金
代码
from __future__ import (absolute_import, division, print_function, unicode_literals) import backtrader as bt import backtrader.feeds as btfeeds import backtrader.indicators as btind futures_like = True if futures_like: commission, margin, mult = 2.0, 2000.0, 10.0 else: commission, margin, mult = 0.005, None, 1 class SMACrossOver(bt.Strategy): def log(self, txt, dt=None): ''' Logging function fot this strategy''' dt = dt or self.datas[0].datetime.date(0) print('%s, %s' % (dt.isoformat(), txt)) def notify(self, order): if order.status in [order.Submitted, order.Accepted]: # Buy/Sell order submitted/accepted to/by broker - Nothing to do return # Check if an order has been completed # Attention: broker could reject order if not enougth cash if order.status in [order.Completed, order.Canceled, order.Margin]: if order.isbuy(): self.log( 'BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' % (order.executed.price, order.executed.value, order.executed.comm)) else: # Sell self.log('SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' % (order.executed.price, order.executed.value, order.executed.comm)) def notify_trade(self, trade): if trade.isclosed: self.log('TRADE PROFIT, GROSS %.2f, NET %.2f' % (trade.pnl, trade.pnlcomm)) def __init__(self): sma = btind.SMA(self.data) # > 0 crossing up / < 0 crossing down self.buysell_sig = btind.CrossOver(self.data, sma) def next(self): if self.buysell_sig > 0: self.log('BUY CREATE, %.2f' % self.data.close[0]) self.buy() # keep order ref to avoid 2nd orders elif self.position and self.buysell_sig < 0: self.log('SELL CREATE, %.2f' % self.data.close[0]) self.sell() if __name__ == '__main__': # Create a cerebro entity cerebro = bt.Cerebro() # Add a strategy cerebro.addstrategy(SMACrossOver) # Create a Data Feed datapath = ('../../datas/2006-day-001.txt') data = bt.feeds.BacktraderCSVData(dataname=datapath) # Add the Data Feed to Cerebro cerebro.adddata(data) # set commission scheme -- CHANGE HERE TO PLAY cerebro.broker.setcommission( commission=commission, margin=margin, mult=mult) # Run over everything cerebro.run() # Plot the result cerebro.plot()