Backtrader寫下來

  |  

隨著 1.1.7.88 版本的發布, backtrader有了一個新的補充:作家

這可能早就到期了,應該已經存在了,問題 #14中的討論也應該已經開始了開發。

但遲到總比沒有好。

Writer實現嘗試與backtrader環境中的其他對象保持一致

  • 通過Cerebro添加

  • 提供最合理的默認值

  • 不要強迫用戶做太多事情

當然,更重要的是了解作者實際寫了什麼。那就是:

  • 的 CSV 輸出
    - `datas` added to the system (can be switched off)
    
    - `strategies` (a Strategy can have named lines)
    
    - `indicators` inside the strategies (only 1st level)
    
    - `observers` inside the strategies (only 1st level)
    
    Which `indicators` and `observers` output data to the CSV stream is
    controlled by the attribute:
    
      `csv` in each instance
    
    The defaults are:
    
      - Observers have `csv = True`
    
      - Indicators have `csv = False`
    
    The value can be overriden for any instance created inside a strategy
    

回測階段結束後, WritersCerebro實例添加一個新部分,並添加以下子部分:

  • 系統中datas的屬性(名稱、壓縮、時間範圍)

  • 系統中strategies的屬性(、參數)

    • 策略中indicators的屬性(、參數)

    • 策略中observers的屬性(,參數)

    • 具有以下屬性的分析器

    • 參數

    • 分析

考慮到所有這些,一個例子可能是展示writers的力量(或弱點)的最簡單方法。

但在如何將它們添加到cerebro之前。

  1. writer參數用於cerebro

    cerebro = bt.Cerebro(writer=True)
    

    這將創建一個默認實例。

  2. 具體補充:

    cerebro = bt.Cerebro()
    
    cerebro.addwriter(bt.WriterFile, csv=False)
    

    添加(現在唯一的writer )一個WriterFile類到writer列表,以便稍後用csv= False實例化(不會在輸出中生成 csv 流。

多空策略的長期示例(完整代碼見下文),通過執行使用Close -SMA 交叉作為信號:

$ ./writer-test.py

圖表:

使用以下輸出:

===============================================================================
Cerebro:
  -----------------------------------------------------------------------------
  - Datas:
    +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    - Data0:
      - Name: 2006-day-001
      - Timeframe: Days
      - Compression: 1
  -----------------------------------------------------------------------------
  - Strategies:
    +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    - LongShortStrategy:
      *************************************************************************
      - Params:
        - csvcross: False
        - printout: False
        - onlylong: False
        - stake: 1
        - period: 15
      *************************************************************************
      - Indicators:
        .......................................................................
        - SMA:
          - Lines: sma
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
          - Params:
            - period: 15
        .......................................................................
        - CrossOver:
          - Lines: crossover
          - Params: None
      *************************************************************************
      - Observers:
        .......................................................................
        - Broker:
          - Lines: cash, value
          - Params: None
        .......................................................................
        - BuySell:
          - Lines: buy, sell
          - Params: None
        .......................................................................
        - Trades:
          - Lines: pnlplus, pnlminus
          - Params: None
      *************************************************************************
      - Analyzers:
        .......................................................................
        - Value:
          - Begin: 100000
          - End: 100826.1
        .......................................................................
        - SQN:
          - Params: None
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
          - Analysis:
            - sqn: 0.05
            - trades: 22

運行後,我們對系統的設置方式以及分析人員最後所說的內容進行了完整的總結。在這種情況下,分析儀

  • Value是策略中的一個假分析器,它收集投資組合的開始和結束值

  • 由 Van K. Tharp 定義的SQN (或 SystemQualityNumber)(除了backtrader 1.1.7.88,它告訴我們它已經看到 22 筆交易併計算出 0.05 的sqn

    這實際上是相當低的。我們可以通過查看一整年後的小額利潤來弄清楚(幸運的是系統沒有虧損)

測試腳本允許我們將策略調整為long-only

$ ./writer-test.py --onlylong --plot

圖表:

現在的輸出是:

===============================================================================
Cerebro:
  -----------------------------------------------------------------------------
  - Datas:
    +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    - Data0:
      - Name: 2006-day-001
      - Timeframe: Days
      - Compression: 1
  -----------------------------------------------------------------------------
  - Strategies:
    +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    - LongShortStrategy:
      *************************************************************************
      - Params:
        - csvcross: False
        - printout: False
        - onlylong: True
        - stake: 1
        - period: 15
      *************************************************************************
      - Indicators:
        .......................................................................
        - SMA:
          - Lines: sma
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
          - Params:
            - period: 15
        .......................................................................
        - CrossOver:
          - Lines: crossover
          - Params: None
      *************************************************************************
      - Observers:
        .......................................................................
        - Broker:
          - Lines: cash, value
          - Params: None
        .......................................................................
        - BuySell:
          - Lines: buy, sell
          - Params: None
        .......................................................................
        - Trades:
          - Lines: pnlplus, pnlminus
          - Params: None
      *************************************************************************
      - Analyzers:
        .......................................................................
        - Value:
          - Begin: 100000
          - End: 102795.0
        .......................................................................
        - SQN:
          - Params: None
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
          - Analysis:
            - sqn: 0.91
            - trades: 11

可以看到策略“參數”的變化(onlylong 已變為True ),分析器講述了一個不同的故事:

  • 期末價值從 100826.1 提高到 102795.0

  • SQN 看到的交易從 22 減少到 11

  • SQN 分數從 0.05 增長到 0.91,這要好得多

但是仍然看不到 CSV 輸出。讓我們運行腳本來打開它:

$ ./writer-test.py --onlylong --writercsv

更新輸出:

===============================================================================
Id,2006-day-001,len,datetime,open,high,low,close,volume,openinterest,LongShortStrategy,len,Broker,len,cash,value,Buy
Sell,len,buy,sell,Trades,len,pnlplus,pnlminus
1,2006-day-001,1,2006-01-02 23:59:59+00:00,3578.73,3605.95,3578.73,3604.33,0.0,0.0,LongShortStrategy,1,Broker,1,1000
00.0,100000.0,BuySell,1,,,Trades,1,,
2,2006-day-001,2,2006-01-03 23:59:59+00:00,3604.08,3638.42,3601.84,3614.34,0.0,0.0,LongShortStrategy,2,Broker,2,1000
00.0,100000.0,BuySell,2,,,Trades,2,,
...
...
...
255,2006-day-001,255,2006-12-29 23:59:59+00:00,4130.12,4142.01,4119.94,4119.94,0.0,0.0,LongShortStrategy,255,Broker,255,100795.0,102795.0,BuySell,255,,,Trades,255,,
===============================================================================
Cerebro:
  -----------------------------------------------------------------------------
...
...

我們可以跳過大部分 csv 流和已經看到的摘要。 CSV 流已打印出以下內容

  • 開頭的剖麵分隔符

  • 標題行

  • 對應數據

請注意每個對像如何打印其“長度”。儘管在這種情況下它沒有提供太多信息,但如果使用多時間幀數據或重放數據,它會提供。

writer默認執行以下操作:

  • 沒有打印指標(簡單移動平均線和交叉點都沒有)

  • 觀察者被打印出來

讓我們使用附加參數運行腳本,以將 CrossOver 指示器添加到 CSV 流中:

$ ./writer-test.py --onlylong --writercsv --csvcross

輸出:

===============================================================================
Id,2006-day-001,len,datetime,open,high,low,close,volume,openinterest,LongShortStrategy,len,CrossOver,len,crossover,B
roker,len,cash,value,BuySell,len,buy,sell,Trades,len,pnlplus,pnlminus
1,2006-day-001,1,2006-01-02 23:59:59+00:00,3578.73,3605.95,3578.73,3604.33,0.0,0.0,LongShortStrategy,1,CrossOver,1,,
Broker,1,100000.0,100000.0,BuySell,1,,,Trades,1,,
...
...

這顯示了作家的一些力量。該類的進一步文檔仍然是待辦事項。

同時,示例中使用的執行可能性和代碼。

用法:

$ ./writer-test.py --help
usage: writer-test.py [-h] [--data DATA] [--fromdate FROMDATE]
                      [--todate TODATE] [--period PERIOD] [--onlylong]
                      [--writercsv] [--csvcross] [--cash CASH] [--comm COMM]
                      [--mult MULT] [--margin MARGIN] [--stake STAKE] [--plot]
                      [--numfigs NUMFIGS]

MultiData Strategy

optional arguments:
  -h, --help            show this help message and exit
  --data DATA, -d DATA  data to add to the system
  --fromdate FROMDATE, -f FROMDATE
                        Starting date in YYYY-MM-DD format
  --todate TODATE, -t TODATE
                        Starting date in YYYY-MM-DD format
  --period PERIOD       Period to apply to the Simple Moving Average
  --onlylong, -ol       Do only long operations
  --writercsv, -wcsv    Tell the writer to produce a csv stream
  --csvcross            Output the CrossOver signals to CSV
  --cash CASH           Starting Cash
  --comm COMM           Commission for operation
  --mult MULT           Multiplier for futures
  --margin MARGIN       Margin for each future
  --stake STAKE         Stake to apply in each operation
  --plot, -p            Plot the read data
  --numfigs NUMFIGS, -n NUMFIGS
                        Plot using numfigs figures

和測試腳本。

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import argparse
import datetime

# The above could be sent to an independent module
import backtrader as bt
import backtrader.feeds as btfeeds
import backtrader.indicators as btind
from backtrader.analyzers import SQN


class LongShortStrategy(bt.Strategy):
    '''This strategy buys/sells upong the close price crossing
    upwards/downwards a Simple Moving Average.

    It can be a long-only strategy by setting the param "onlylong" to True
    '''
    params = dict(
        period=15,
        stake=1,
        printout=False,
        onlylong=False,
        csvcross=False,
    )

    def start(self):
        pass

    def stop(self):
        pass

    def log(self, txt, dt=None):
        if self.p.printout:
            dt = dt or self.data.datetime[0]
            dt = bt.num2date(dt)
            print('%s, %s' % (dt.isoformat(), txt))

    def __init__(self):
        # To control operation entries
        self.orderid = None

        # Create SMA on 2nd data
        sma = btind.MovAv.SMA(self.data, period=self.p.period)
        # Create a CrossOver Signal from close an moving average
        self.signal = btind.CrossOver(self.data.close, sma)
        self.signal.csv = self.p.csvcross

    def next(self):
        if self.orderid:
            return  # if an order is active, no new orders are allowed

        if self.signal > 0.0:  # cross upwards
            if self.position:
                self.log('CLOSE SHORT , %.2f' % self.data.close[0])
                self.close()

            self.log('BUY CREATE , %.2f' % self.data.close[0])
            self.buy(size=self.p.stake)

        elif self.signal < 0.0:
            if self.position:
                self.log('CLOSE LONG , %.2f' % self.data.close[0])
                self.close()

            if not self.p.onlylong:
                self.log('SELL CREATE , %.2f' % self.data.close[0])
                self.sell(size=self.p.stake)

    def notify_order(self, order):
        if order.status in [bt.Order.Submitted, bt.Order.Accepted]:
            return  # Await further notifications

        if order.status == order.Completed:
            if order.isbuy():
                buytxt = 'BUY COMPLETE, %.2f' % order.executed.price
                self.log(buytxt, order.executed.dt)
            else:
                selltxt = 'SELL COMPLETE, %.2f' % order.executed.price
                self.log(selltxt, order.executed.dt)

        elif order.status in [order.Expired, order.Canceled, order.Margin]:
            self.log('%s ,' % order.Status[order.status])
            pass  # Simply log

        # Allow new orders
        self.orderid = None

    def notify_trade(self, trade):
        if trade.isclosed:
            self.log('TRADE PROFIT, GROSS %.2f, NET %.2f' %
                     (trade.pnl, trade.pnlcomm))

        elif trade.justopened:
            self.log('TRADE OPENED, SIZE %2d' % trade.size)


def runstrategy():
    args = parse_args()

    # Create a cerebro
    cerebro = bt.Cerebro()

    # Get the dates from the args
    fromdate = datetime.datetime.strptime(args.fromdate, '%Y-%m-%d')
    todate = datetime.datetime.strptime(args.todate, '%Y-%m-%d')

    # Create the 1st data
    data = btfeeds.BacktraderCSVData(
        dataname=args.data,
        fromdate=fromdate,
        todate=todate)

    # Add the 1st data to cerebro
    cerebro.adddata(data)

    # Add the strategy
    cerebro.addstrategy(LongShortStrategy,
                        period=args.period,
                        onlylong=args.onlylong,
                        csvcross=args.csvcross,
                        stake=args.stake)

    # Add the commission - only stocks like a for each operation
    cerebro.broker.setcash(args.cash)

    # Add the commission - only stocks like a for each operation
    cerebro.broker.setcommission(commission=args.comm,
                                 mult=args.mult,
                                 margin=args.margin)

    cerebro.addanalyzer(SQN)

    cerebro.addwriter(bt.WriterFile, csv=args.writercsv, rounding=2)

    # And run it
    cerebro.run()

    # Plot if requested
    if args.plot:
        cerebro.plot(numfigs=args.numfigs, volume=False, zdown=False)


def parse_args():
    parser = argparse.ArgumentParser(description='MultiData Strategy')

    parser.add_argument('--data', '-d',
                        default='../../datas/2006-day-001.txt',
                        help='data to add to the system')

    parser.add_argument('--fromdate', '-f',
                        default='2006-01-01',
                        help='Starting date in YYYY-MM-DD format')

    parser.add_argument('--todate', '-t',
                        default='2006-12-31',
                        help='Starting date in YYYY-MM-DD format')

    parser.add_argument('--period', default=15, type=int,
                        help='Period to apply to the Simple Moving Average')

    parser.add_argument('--onlylong', '-ol', action='store_true',
                        help='Do only long operations')

    parser.add_argument('--writercsv', '-wcsv', action='store_true',
                        help='Tell the writer to produce a csv stream')

    parser.add_argument('--csvcross', action='store_true',
                        help='Output the CrossOver signals to CSV')

    parser.add_argument('--cash', default=100000, type=int,
                        help='Starting Cash')

    parser.add_argument('--comm', default=2, type=float,
                        help='Commission for operation')

    parser.add_argument('--mult', default=10, type=int,
                        help='Multiplier for futures')

    parser.add_argument('--margin', default=2000.0, type=float,
                        help='Margin for each future')

    parser.add_argument('--stake', default=1, type=int,
                        help='Stake to apply in each operation')

    parser.add_argument('--plot', '-p', action='store_true',
                        help='Plot the read data')

    parser.add_argument('--numfigs', '-n', default=1,
                        help='Plot using numfigs figures')

    return parser.parse_args()


if __name__ == '__main__':
    runstrategy()

推薦閱讀

相關文章

Backtrader教程:經紀人 - 開倉作弊

“發佈”1.9.44.116 添加了對 Cheat-On-Open的支援。這似乎是那些全力以赴的人的需求功能,他們在酒吧 close 后進行了計算,但希望與 open 價格相匹配。 當開盤價跳空(上漲或下跌,取決於是否buysell有效)並且現金不足以進行全面運營時,這樣的用例就會失敗。這將強制代理拒絕該操作。

BacktraderPython Hidden Powers 2

讓我們進一步討論一下Python的隱藏功能如何在 backtrader 中使用,以及如何實現它以嘗試實現主要目標:易用性 這些定義是什麼? 例如指標: import backtrader as bt class MyIndicator(bt.

Backtrader訂單歷史

通過發佈1.9.55.122, backtrader 現在可用於評估一組外部訂單的性能。

Backtrader在同一軸上列印

上一篇文章期貨和現貨補償,在同一空間上繪製原始數據和略微(隨機)修改的數據,但不是在同一軸上。 從該帖子中恢復第 1張圖片。 人們可以看到: 圖表的左側和右側有不同的刻度 當查看在原始數據周圍振蕩+- 50點的旋轉紅line(隨機數據)時,這一點最為明顯。

Backtrader實際使用方式

最後,似乎已經付出了開發 backtrader是值得的。 在觀察 last 周的歐洲市場時,似乎世界末日了,一位朋友問我是否可以看看我們圖表包中的數據,看看與以前類似情況相比,下跌幅度如何。 當然可以,但我說我可以做的不僅僅是查看圖表,因為我可以快速: 創建一個快速LegDown 指示器來測量跌落的範圍。

Backtrader Python隐藏的细节

只有當遇到 backtrader 的真實使用者時,人們才能意識到平臺中使用的抽象和Python功能是否有意義。 在不撇開python的座右銘的情況下, backtrader 試圖為使用者提供盡可能多的控制權,同時通過將Python提供的隱藏功能付諸行動來簡化使用。 第一個示例是系列文章的第一篇。

Backtrader 教程:數據饋送 - 開發 - CSV

backtrader已經提供了通用 CSV數據提要和一些特定的 CSV數據提要。

Backtrader開場作弊

“發佈”1.9.44.116 添加了對 Cheat-On-Open的支援。這似乎是那些全力以赴的人的需求功能,他們在酒吧 close 后進行了計算,但希望與 open 價格相匹配。 當開盤價跳空(上漲或下跌,取決於是否buysell有效)並且現金不足以進行全面運營時,這樣的用例就會失敗。這將強制代理拒絕該操作。

Backtrader信貸利息

在某些情況下,真實經紀人的現金金額可能會減少,因為資產操作包括利率。例子: 賣空股票 交易所買賣基金包括多頭和空頭 這意味著不僅交易構成了系統的盈利能力,因為信貸上的利息在帳戶上佔有一席之地。 為了涵蓋這種情況, backtrader 包括(從發佈1.8.8.96開始)功能來考慮這一點。

Backtrader熊貓數據饋送

在一些小的增強功能和一些OrderDict調整中,以獲得更好的Python 2.6支援, backtrader 的最新版本增加了對分析Pandas Dataframe或Time Series數據的支援。