Backtrader訂單歷史

  |  

通過發佈1.9.55.122backtrader 現在可用於評估一組外部訂單的性能。這可以用於例如:

  • 評估一組使用判斷易(即:人為自由裁量決策)的訂單 / 交易

  • 評估在另一個平臺上創建的訂單並驗證該平臺analyzers

  • 顯然,在另一個方向上,根據其他平台的眾所周知的結果來評估 backtrader 返回的內容

使用模式

...
cerebro.adddata(mydata)
...
cerebro.add_order_history(orders, notify=True or False)
...
cerebro.run()

這裡顯而易見的問題是orders 必須是什麼樣子。讓我們引用文件:

  • orders:是一個可反覆運算的(例如:清單,元組,反覆運算器,生成器),其中每個元素也將是具有以下子元素的可反覆運算(帶長度)(2種格式是可能的)

    [datetime, size, price][datetime, size, price, data]

    注意:它必須排序(或生成排序元素)依據

    datetime ascending
    

    哪裡:

    • datetime 是一個 python date/datetime 實例或格式為 YYYY-MM-DD[THH:MM:SS[.us]] 的字串串,其中括號中的元素是可選的

    • size 是一個整數(正數表示買入,負數表示賣出)

    • price 是浮點數/整數

    • data 如果存在,可以採用以下任何值

      • 無 -第 1 data feed將用作目標

      • integer - 將使用具有該索引的數據(Cerebro中的插入順序)

      • string - 具有該名稱的數據,例如賦cerebro.addata(data, name=value)值,將是目標

在以下情況下notify

  • notify (預設值: True

    如果True 系統中插入的第 1 個 策略將收到有關在 中每個訂單的信息之後創建的人工訂單的通知 orders

注意

請注意上面的示例是如何添加 data feed的。是的 ,這是必需的。

訂單外觀的實際範例

ORDER_HISTORY = (
    ('2005-02-01', 1, 2984.63),
    ('2005-03-04', -1, 3079.93),
    ...
    ('2006-12-18', 1, 4140.99),
)

具有3個元素的可反覆運算物件,可以從CSV檔完美載入。

示例

下面的範例執行兩項操作:

  1. 執行簡單的 SMA 交叉策略

  2. 添加訂單歷史記錄,該歷史記錄執行與 SMA 交叉策略相同的操作

    在第二種情況下添加了一個空策略來接收訂單和交易通知notify_ordernotify_trade

在這兩種情況下,都會載入一組 analyzersTimeReturn 在月和年和一個 TradeAnalyzer中)...並且它們應返回相同的值。

運行 1:SMA 交叉

$ ./order-history.py --plot --cerebro writer=True

生成圖表

和一些文本輸出(為簡潔起見,有上限):

Creating Signal Strategy
2005-02-01,1,2984.63
2005-03-04,-1,3079.93
...
2006-12-01,-1,3993.03
profit 177.9000000000001
2006-12-18,1,4140.99
===============================================================================
Cerebro:
...
        - timereturn1:
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
          - Params:
            - timeframe: 8
            - compression: None
            - _doprenext: True
            - data: None
            - firstopen: True
            - fund: None
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
          - Analysis:
            - 2005-12-31: 0.03580099999999975
            - 2006-12-31: 0.01649448108275653
        .......................................................................
        - tradeanalyzer:
          - Params: None
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
          - Analysis:
            """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
            - total:
              - total: 14
              - open: 1
              - closed: 13
            """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
            - streak:
              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
              - won:
                - current: 2
                - longest: 2
...

運行 2:訂單歷史記錄

$ ./order-history.py --plot --cerebro writer=True --order-history

這會產生一個似乎沒有差異的圖表

和一些文本輸出(為簡潔起見,再次限制):

Creating Empty Strategy
2005-02-01,1,2984.63
2005-03-04,-1,3079.93
...
        .......................................................................
        - timereturn1:
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
          - Params:
            - timeframe: 8
            - compression: None
            - _doprenext: True
            - data: None
            - firstopen: True
            - fund: None
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
          - Analysis:
            - 2005-12-31: 0.03580099999999975
            - 2006-12-31: 0.01649448108275653
        .......................................................................
        - tradeanalyzer:
          - Params: None
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
          - Analysis:
            """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
            - total:
              - total: 14
              - open: 1
              - closed: 13
            """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
            - streak:
              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
              - won:
                - current: 2
                - longest: 2
...

並且預期的值與引用的值匹配。

結論

例如,可以衡量判斷易的表現。這有時與演算法交易結合使用,其中演算法產生信號,但人類對信號是否必須轉化為實際交易有最終決定權。

示例用法

$ ./order-history.py --help
usage: order-history.py [-h] [--data0 DATA0] [--fromdate FROMDATE]
                        [--todate TODATE] [--order-history] [--cerebro kwargs]
                        [--broker kwargs] [--sizer kwargs] [--strat kwargs]
                        [--plot [kwargs]]

Order History Sample

optional arguments:
  -h, --help           show this help message and exit
  --data0 DATA0        Data to read in (default:
                       ../../datas/2005-2006-day-001.txt)
  --fromdate FROMDATE  Date[time] in YYYY-MM-DD[THH:MM:SS] format (default: )
  --todate TODATE      Date[time] in YYYY-MM-DD[THH:MM:SS] format (default: )
  --order-history      use order history (default: False)
  --cerebro kwargs     kwargs in key=value format (default: )
  --broker kwargs      kwargs in key=value format (default: )
  --sizer kwargs       kwargs in key=value format (default: )
  --strat kwargs       kwargs in key=value format (default: )
  --plot [kwargs]      kwargs in key=value format (default: )

示例代碼

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import argparse
import datetime

import backtrader as bt


ORDER_HISTORY = (
    ('2005-02-01', 1, 2984.63),
    ('2005-03-04', -1, 3079.93),
    ('2005-03-08', 1, 3113.82),
    ('2005-03-22', -1, 3040.55),
    ('2005-04-08', 1, 3092.07),
    ('2005-04-20', -1, 2957.92),
    ('2005-05-13', 1, 2991.71),
    ('2005-08-19', -1, 3284.35),
    ('2005-08-22', 1, 3328.84),
    ('2005-08-25', -1, 3293.69),
    ('2005-09-12', 1, 3361.1),
    ('2005-10-18', -1, 3356.73),
    ('2005-11-09', 1, 3361.92),
    ('2006-01-24', -1, 3544.78),
    ('2006-02-06', 1, 3678.87),
    ('2006-03-13', -1, 3801.03),
    ('2006-03-20', 1, 3833.25),
    ('2006-04-13', -1, 3777.24),
    ('2006-05-02', 1, 3839.24),
    ('2006-05-16', -1, 3711.46),
    ('2006-06-30', 1, 3592.01),
    ('2006-07-21', -1, 3580.53),
    ('2006-08-01', 1, 3687.82),
    ('2006-09-14', -1, 3809.08),
    ('2006-09-25', 1, 3815.13),
    ('2006-12-01', -1, 3993.03),
    ('2006-12-18', 1, 4140.99),
)


class SmaCross(bt.SignalStrategy):
    params = dict(sma1=10, sma2=20)

    def notify_order(self, order):
        if not order.alive():
            print(','.join(str(x) for x in
                           (self.data.num2date(order.executed.dt).date(),
                            order.executed.size * 1 if order.isbuy() else -1,
                            order.executed.price)))

    def notify_trade(self, trade):
        if trade.isclosed:
            print('profit {}'.format(trade.pnlcomm))

    def __init__(self):
        print('Creating Signal Strategy')
        sma1 = bt.ind.SMA(period=self.params.sma1)
        sma2 = bt.ind.SMA(period=self.params.sma2)
        crossover = bt.ind.CrossOver(sma1, sma2)
        self.signal_add(bt.SIGNAL_LONG, crossover)


class St(bt.Strategy):
    params = dict(
    )

    def notify_order(self, order):
        if not order.alive():
            print(','.join(str(x) for x in
                           (self.data.num2date(order.executed.dt).date(),
                            order.executed.size * 1 if order.isbuy() else -1,
                            order.executed.price)))

    def notify_trade(self, trade):
        if trade.isclosed:
            print('profit {}'.format(trade.pnlcomm))

    def __init__(self):
        print('Creating Empty Strategy')
        pass

    def next(self):
        pass


def runstrat(args=None):
    args = parse_args(args)

    cerebro = bt.Cerebro()

    # Data feed kwargs
    kwargs = dict()

    # Parse from/to-date
    dtfmt, tmfmt = '%Y-%m-%d', 'T%H:%M:%S'
    for a, d in ((getattr(args, x), x) for x in ['fromdate', 'todate']):
        if a:
            strpfmt = dtfmt + tmfmt * ('T' in a)
            kwargs[d] = datetime.datetime.strptime(a, strpfmt)

    data0 = bt.feeds.BacktraderCSVData(dataname=args.data0, **kwargs)
    cerebro.adddata(data0)

    # Broker
    cerebro.broker = bt.brokers.BackBroker(**eval('dict(' + args.broker + ')'))

    # Sizer
    cerebro.addsizer(bt.sizers.FixedSize, **eval('dict(' + args.sizer + ')'))

    # Strategy
    if not args.order_history:
        cerebro.addstrategy(SmaCross, **eval('dict(' + args.strat + ')'))
    else:
        cerebro.addstrategy(St, **eval('dict(' + args.strat + ')'))
        cerebro.add_order_history(ORDER_HISTORY, notify=True)

    cerebro.addanalyzer(bt.analyzers.TimeReturn, timeframe=bt.TimeFrame.Months)
    cerebro.addanalyzer(bt.analyzers.TimeReturn, timeframe=bt.TimeFrame.Years)
    cerebro.addanalyzer(bt.analyzers.TradeAnalyzer)

    # Execute
    cerebro.run(**eval('dict(' + args.cerebro + ')'))

    if args.plot:  # Plot if requested to
        cerebro.plot(**eval('dict(' + args.plot + ')'))


def parse_args(pargs=None):
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        description=(
            'Order History Sample'
        )
    )

    parser.add_argument('--data0', default='../../datas/2005-2006-day-001.txt',
                        required=False, help='Data to read in')

    # Defaults for dates
    parser.add_argument('--fromdate', required=False, default='',
                        help='Date[time] in YYYY-MM-DD[THH:MM:SS] format')

    parser.add_argument('--todate', required=False, default='',
                        help='Date[time] in YYYY-MM-DD[THH:MM:SS] format')

    parser.add_argument('--order-history', required=False, action='store_true',
                        help='use order history')

    parser.add_argument('--cerebro', required=False, default='',
                        metavar='kwargs', help='kwargs in key=value format')

    parser.add_argument('--broker', required=False, default='',
                        metavar='kwargs', help='kwargs in key=value format')

    parser.add_argument('--sizer', required=False, default='',
                        metavar='kwargs', help='kwargs in key=value format')

    parser.add_argument('--strat', required=False, default='',
                        metavar='kwargs', help='kwargs in key=value format')

    parser.add_argument('--plot', required=False, default='',
                        nargs='?', const='{}',
                        metavar='kwargs', help='kwargs in key=value format')

    return parser.parse_args(pargs)


if __name__ == '__main__':
    runstrat()

推薦閱讀

相關文章

Backtrader細分傭金計劃

不久前,委員會計劃的實施進行了重新設計。最重要的是:涉及的部分返工: 保留原始的傭金資訊類和行為 打開大門,輕鬆創建使用者定義的傭金 將格式 xx% 作為新傭金方案的預設值,而不是 0.xx(只是一個品味問題),保持行為可配置 擴展委員會概述了基本要素。

Backtrader按日線交易

似乎在世界某個地方有一種权益(Interest)可以總結如下: 使用每日柱線引入訂單,但使用開盤價 這來自工單#105订单执行逻辑与当前数据和#101动态投注计算中的對話 backtrader 嘗試盡可能保持現實,並且在處理每日柱線時適用以下前提: 當每日柱被評估時,柱線已經結束 這是有道理的,

BacktraderMFI 通用

在最近的Canonical vs Non-Canonical 帖子中 MFI ,開發了(aka MoneyFlowIndicator)。 儘管它是以規範的方式開發的,但它仍然提供了一些改進和成為通用的空間。

Backtrader同步不同市場

使用次數越多, backtrader 必須面對的想法和意外場景的混合就越多。對於每個新平臺,一個挑戰是要看看平臺是否能夠達到開發開始時設定的期望,靈活性和易用性是目標,Python被選為基石。 工單#76 提出了一個問題,即是否可以完成具有不同交易日曆的同步市場。

Backtrader教程:篩檢程式

此功能是 backtrader 的相對較新的補充,必須安裝到已經存在的內部結構中。這使得它不像希望的那樣靈活且100%功能齊全,但在許多情況下它仍然可以達到目的。 儘管該實現試圖允許隨插即用的篩檢程式連結,但預先存在的內部結構使得很難確保始終可以實現。因此,某些篩選器可能是連結的,而其他一些篩選器可能不是。

Backtrader Python隐藏的细节

只有當遇到 backtrader 的真實使用者時,人們才能意識到平臺中使用的抽象和Python功能是否有意義。 在不撇開python的座右銘的情況下, backtrader 試圖為使用者提供盡可能多的控制權,同時通過將Python提供的隱藏功能付諸行動來簡化使用。 第一個示例是系列文章的第一篇。

Backtrader教程:經紀商

經紀商模擬器該類比支援不同的訂單類型,根據當前現金檢查提交的訂單現金需求,跟蹤每次反覆運算的cerebro 現金和價值,並在不同數據上保持當前位置。

Backtrader蟒蛇隱藏的力量3

Last,但並非最不重要的一點是,在這個系列中,關於如何在 backtrader 中使用Python的隱藏功能是一些神奇變數是如何出現的。

Backtrader熊貓數據饋送

在一些小的增強功能和一些OrderDict調整中,以獲得更好的Python 2.6支援, backtrader 的最新版本增加了對分析Pandas Dataframe或Time Series數據的支援。

Backtrader教程:數據饋送 - 多個時間幀

有時投資決策是使用不同的時間框架做出的: 每周評估趨勢 每天執行條目 或者5分鐘對60分鐘。 這意味著需要組合多個時間幀的數據backtrader 來支援這種組合。 對它的本機支持已經內置。