Backtrader多重交易

  |  

即使在相同的數據上運行,現在也可以為每筆交易添加唯一標識符。

根據Tick Data and Resampling 版本backtrader的請求,支持“MultiTrades”,即:為訂單分配tradeid的能力。此 id 被傳遞給Trades ,這使得有可能擁有不同類別的交易並同時打開它們。

可以在以下情況下指定tradeid

  • 使用kwarg tradeid調用 Strategy.buy/sell/close

  • 使用 kwarg tradeid 調用tradeid

  • 使用 kwarg tradeid創建 Order 實例

如果未指定,則默認值為:

  • tradeid = 0

為了測試一個小腳本已經實現,通過自定義MTradeObserver的實現來可視化結果,它根據tradeid在圖上分配不同的標記(用於測試值 0、1 和 2)

該腳本支持使用三個 id (0, 1, 2) 或簡單地使用 0 (默認)

不啟用多個 id 的執行:

$ ./multitrades.py --plot

結果圖表顯示所有交易的 id 0 ,因此無法區分。

第二次執行通過在 0、1 和 2 之間循環來啟用多重交易:

$ ./multitrades.py --plot --mtrade

現在 3 個不同的標記交替顯示每個交易可以使用tradeid成員進行區分。

筆記

backtrader嘗試使用模擬現實的模型。因此“交易”不是由只處理訂單的Broker實例計算的。

交易由策略計算。

因此,現實生活中的經紀人可能不支持tradeid (或類似的東西),在這種情況下,需要手動跟踪經紀人分配的唯一訂單 ID。

現在,自定義觀察者的代碼

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import math

import backtrader as bt


class MTradeObserver(bt.observer.Observer):
    lines = ('Id_0', 'Id_1', 'Id_2')

    plotinfo = dict(plot=True, subplot=True, plotlinelabels=True)

    plotlines = dict(
        Id_0=dict(marker='*', markersize=8.0, color='lime', fillstyle='full'),
        Id_1=dict(marker='o', markersize=8.0, color='red', fillstyle='full'),
        Id_2=dict(marker='s', markersize=8.0, color='blue', fillstyle='full')
    )

    def next(self):
        for trade in self._owner._tradespending:

            if trade.data is not self.data:
                continue

            if not trade.isclosed:
                continue

            self.lines[trade.tradeid][0] = trade.pnlcomm

主要腳本用法:

$ ./multitrades.py --help
usage: multitrades.py [-h] [--data DATA] [--fromdate FROMDATE]
                      [--todate TODATE] [--mtrade] [--period PERIOD]
                      [--onlylong] [--cash CASH] [--comm COMM] [--mult MULT]
                      [--margin MARGIN] [--stake STAKE] [--plot]
                      [--numfigs NUMFIGS]

MultiTrades

optional arguments:
  -h, --help            show this help message and exit
  --data DATA, -d DATA  data to add to the system
  --fromdate FROMDATE, -f FROMDATE
                        Starting date in YYYY-MM-DD format
  --todate TODATE, -t TODATE
                        Starting date in YYYY-MM-DD format
  --mtrade              Activate MultiTrade Ids
  --period PERIOD       Period to apply to the Simple Moving Average
  --onlylong, -ol       Do only long operations
  --cash CASH           Starting Cash
  --comm COMM           Commission for operation
  --mult MULT           Multiplier for futures
  --margin MARGIN       Margin for each future
  --stake STAKE         Stake to apply in each operation
  --plot, -p            Plot the read data
  --numfigs NUMFIGS, -n NUMFIGS
                        Plot using numfigs figures

腳本的代碼。

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import argparse
import datetime
import itertools

# The above could be sent to an independent module
import backtrader as bt
import backtrader.feeds as btfeeds
import backtrader.indicators as btind

import mtradeobserver


class MultiTradeStrategy(bt.Strategy):
    '''This strategy buys/sells upong the close price crossing
    upwards/downwards a Simple Moving Average.

    It can be a long-only strategy by setting the param "onlylong" to True
    '''
    params = dict(
        period=15,
        stake=1,
        printout=False,
        onlylong=False,
        mtrade=False,
    )

    def log(self, txt, dt=None):
        if self.p.printout:
            dt = dt or self.data.datetime[0]
            dt = bt.num2date(dt)
            print('%s, %s' % (dt.isoformat(), txt))

    def __init__(self):
        # To control operation entries
        self.order = None

        # Create SMA on 2nd data
        sma = btind.MovAv.SMA(self.data, period=self.p.period)
        # Create a CrossOver Signal from close an moving average
        self.signal = btind.CrossOver(self.data.close, sma)

        # To alternate amongst different tradeids
        if self.p.mtrade:
            self.tradeid = itertools.cycle([0, 1, 2])
        else:
            self.tradeid = itertools.cycle([0])

    def next(self):
        if self.order:
            return  # if an order is active, no new orders are allowed

        if self.signal > 0.0:  # cross upwards
            if self.position:
                self.log('CLOSE SHORT , %.2f' % self.data.close[0])
                self.close(tradeid=self.curtradeid)

            self.log('BUY CREATE , %.2f' % self.data.close[0])
            self.curtradeid = next(self.tradeid)
            self.buy(size=self.p.stake, tradeid=self.curtradeid)

        elif self.signal < 0.0:
            if self.position:
                self.log('CLOSE LONG , %.2f' % self.data.close[0])
                self.close(tradeid=self.curtradeid)

            if not self.p.onlylong:
                self.log('SELL CREATE , %.2f' % self.data.close[0])
                self.curtradeid = next(self.tradeid)
                self.sell(size=self.p.stake, tradeid=self.curtradeid)

    def notify_order(self, order):
        if order.status in [bt.Order.Submitted, bt.Order.Accepted]:
            return  # Await further notifications

        if order.status == order.Completed:
            if order.isbuy():
                buytxt = 'BUY COMPLETE, %.2f' % order.executed.price
                self.log(buytxt, order.executed.dt)
            else:
                selltxt = 'SELL COMPLETE, %.2f' % order.executed.price
                self.log(selltxt, order.executed.dt)

        elif order.status in [order.Expired, order.Canceled, order.Margin]:
            self.log('%s ,' % order.Status[order.status])
            pass  # Simply log

        # Allow new orders
        self.order = None

    def notify_trade(self, trade):
        if trade.isclosed:
            self.log('TRADE PROFIT, GROSS %.2f, NET %.2f' %
                     (trade.pnl, trade.pnlcomm))

        elif trade.justopened:
            self.log('TRADE OPENED, SIZE %2d' % trade.size)


def runstrategy():
    args = parse_args()

    # Create a cerebro
    cerebro = bt.Cerebro()

    # Get the dates from the args
    fromdate = datetime.datetime.strptime(args.fromdate, '%Y-%m-%d')
    todate = datetime.datetime.strptime(args.todate, '%Y-%m-%d')

    # Create the 1st data
    data = btfeeds.BacktraderCSVData(
        dataname=args.data,
        fromdate=fromdate,
        todate=todate)

    # Add the 1st data to cerebro
    cerebro.adddata(data)

    # Add the strategy
    cerebro.addstrategy(MultiTradeStrategy,
                        period=args.period,
                        onlylong=args.onlylong,
                        stake=args.stake,
                        mtrade=args.mtrade)

    # Add the commission - only stocks like a for each operation
    cerebro.broker.setcash(args.cash)

    # Add the commission - only stocks like a for each operation
    cerebro.broker.setcommission(commission=args.comm,
                                 mult=args.mult,
                                 margin=args.margin)

    # Add the MultiTradeObserver
    cerebro.addobserver(mtradeobserver.MTradeObserver)

    # And run it
    cerebro.run()

    # Plot if requested
    if args.plot:
        cerebro.plot(numfigs=args.numfigs, volume=False, zdown=False)


def parse_args():
    parser = argparse.ArgumentParser(description='MultiTrades')

    parser.add_argument('--data', '-d',
                        default='../../datas/2006-day-001.txt',
                        help='data to add to the system')

    parser.add_argument('--fromdate', '-f',
                        default='2006-01-01',
                        help='Starting date in YYYY-MM-DD format')

    parser.add_argument('--todate', '-t',
                        default='2006-12-31',
                        help='Starting date in YYYY-MM-DD format')

    parser.add_argument('--mtrade', action='store_true',
                        help='Activate MultiTrade Ids')

    parser.add_argument('--period', default=15, type=int,
                        help='Period to apply to the Simple Moving Average')

    parser.add_argument('--onlylong', '-ol', action='store_true',
                        help='Do only long operations')

    parser.add_argument('--cash', default=100000, type=int,
                        help='Starting Cash')

    parser.add_argument('--comm', default=2, type=float,
                        help='Commission for operation')

    parser.add_argument('--mult', default=10, type=int,
                        help='Multiplier for futures')

    parser.add_argument('--margin', default=2000.0, type=float,
                        help='Margin for each future')

    parser.add_argument('--stake', default=1, type=int,
                        help='Stake to apply in each operation')

    parser.add_argument('--plot', '-p', action='store_true',
                        help='Plot the read data')

    parser.add_argument('--numfigs', '-n', default=1,
                        help='Plot using numfigs figures')

    return parser.parse_args()


if __name__ == '__main__':
    runstrategy()

推薦閱讀

相關文章

Backtrader教程:安裝

要求和版本 backtrader 是獨立的,沒有外部依賴關係(除非要繪圖) 基本要求是: Python 2.7 Python 3.2 / 3.3/ 3.4 / 3.5 pypy/pypy3 如果需要繪圖,則其他要求: Matplotlib >= 1.4.

Backtrader同步不同市場

使用次數越多, backtrader 必須面對的想法和意外場景的混合就越多。對於每個新平臺,一個挑戰是要看看平臺是否能夠達到開發開始時設定的期望,靈活性和易用性是目標,Python被選為基石。 工單#76 提出了一個問題,即是否可以完成具有不同交易日曆的同步市場。

Backtrader唐鐘斯10天連勝

它已成為新聞。DJI正在創下歷史新高,已經連續10個上漲日和9個歷史高點。例如,請參閱: 當然,許多人已經注意到道瓊斯指數處於這樣的狀態,這篇文章只是告訴我們它正在成為主流。

Backtrader回溯

在一些關於改進的ShapeRatio的提示之後, backtrader 已將此分析儀添加到其武器庫中。 文獻位於: 從對數回報的好處開始,並遵循在SharpeRatio方程的分母中具有標準偏差的副作用,本文檔開發了該分析儀的公式和期望。

Backtrader數據同步

在最新版本中,次要編號已從 8 移至 9,以指示即使已考慮相容性,也可能會對行為產生一些影響。 在 1.9.0.99 版中,使用 datetime 同步多個數據的整個機制已經重新設計(適用於下一個和一次模式)。

Backtrader數據多時間幀

有時投資決策是使用不同的時間框架做出的: 每周評估趨勢 每天執行條目 或者5分鐘對60分鐘。 這意味著需要將多個時間幀的數據組合在 backtrader 中以支援此類組合。 對它的本機支持已經內置。

Backtrader 教程:數據饋送 - 開發 - CSV

backtrader已經提供了通用 CSV數據提要和一些特定的 CSV數據提要。

Backtrader 教程:指標 - 時間框架混合

版本 1.3.0.92提供了混合來自不同時間範圍的數據(來自數據饋送和/或指標)的可能性。背景:指標是智能的啞對象。他們很聰明,因為他們可以進行複雜的計算。他們是愚蠢的,因為他們在不知道哪些來源為計算提供數據的情況下進行操作像這樣:如果提供值的數據源在Cerebro引擎內具有不同的時間範圍、不同的長度,則指標將中斷。

Backtrader蟒蛇隱藏的力量3

Last,但並非最不重要的一點是,在這個系列中,關於如何在 backtrader 中使用Python的隱藏功能是一些神奇變數是如何出現的。

Backtrader開場作弊

“發佈”1.9.44.116 添加了對 Cheat-On-Open的支援。這似乎是那些全力以赴的人的需求功能,他們在酒吧 close 后進行了計算,但希望與 open 價格相匹配。 當開盤價跳空(上漲或下跌,取決於是否buysell有效)並且現金不足以進行全面運營時,這樣的用例就會失敗。這將強制代理拒絕該操作。