Backtrader對逐筆報價數據重新取樣

  |  

backtrader 已經可以從分鐘數據中重新採樣。接受價格變動數據不是問題,只需將 4 個常用欄位(openhighlowclose)設置為價格變動值。

但是傳遞要重新採樣的逐筆報價數據再次生成相同的數據。作為或版本 1.1.11.88,情況已不再如此。現在

  • 時間框架 (backtrader.TimeFrame) 已擴展為包含 “Ticks”、“MicroSeconds” 和 “Seconds” 的常量和名稱

  • 重新採樣可以管理上述 3 個時間幀並對其進行採樣。

注意

因為逐筆報價數據是最低可能的時間幀,它實際上可以被“壓縮”(n 根柱線到 1 根柱線),但不能從最小的時間幀內進行採樣。

新版本包含一個小tickdata.csv 示例,該示例添加到源數據中,並添加了一個新的示例腳本 resample-tickdata.py 來使用它。

注意

更新了腳本以使用新Cerebro.resampledata 方法,從而避免了手動實例化 backtrader.DataResampler

預設執行不涉及資料:

$ ./resample-tickdata.py

產生此圖表:

將 3 個分時壓縮為 1 個:

$ ./resample-tickdata.py --timeframe ticks --compression 3

產生此圖表:

壓縮后,我們不再有單個「價格變動」 而是「柱線」。

現在壓縮到秒和5條壓縮:

$ ./resample-tickdata.py --timeframe seconds --compression 5

使用新圖表:

最後到幾分鐘。範例資料包含 4 個不同分鐘的逐筆報價資料(檔案中 last 分時是第 4 分鐘 的唯一價格變動):

$ ./resample-tickdata.py --timeframe minutes

有4個柱(在頂部可以看到最終價格是3069)。第 4 根 柱線是此分鐘的單個點,檔中存在單個價格變動。

文稿用法:

$ ./resample-tickdata.py --help
usage: resample-tickdata.py [-h] [--dataname DATANAME]
                            [--timeframe {ticks,microseconds,seconds,minutes,daily,weekly,monthly}]
                            [--compression COMPRESSION]

Resampling script down to tick data

optional arguments:
  -h, --help            show this help message and exit
  --dataname DATANAME   File Data to Load
  --timeframe {ticks,microseconds,seconds,minutes,daily,weekly,monthly}
                        Timeframe to resample to
  --compression COMPRESSION
                        Compress n bars into 1

還有代碼。

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import argparse

import backtrader as bt
import backtrader.feeds as btfeeds


def runstrat():
    args = parse_args()

    # Create a cerebro entity
    cerebro = bt.Cerebro(stdstats=False)

    # Add a strategy
    cerebro.addstrategy(bt.Strategy)

    # Load the Data
    datapath = args.dataname or '../../datas/ticksample.csv'

    data = btfeeds.GenericCSVData(
        dataname=datapath,
        dtformat='%Y-%m-%dT%H:%M:%S.%f',
        timeframe=bt.TimeFrame.Ticks,
    )

    # Handy dictionary for the argument timeframe conversion
    tframes = dict(
        ticks=bt.TimeFrame.Ticks,
        microseconds=bt.TimeFrame.MicroSeconds,
        seconds=bt.TimeFrame.Seconds,
        minutes=bt.TimeFrame.Minutes,
        daily=bt.TimeFrame.Days,
        weekly=bt.TimeFrame.Weeks,
        monthly=bt.TimeFrame.Months)

    # Resample the data
    data = cerebro.resampledata(data,
                                timeframe=tframes[args.timeframe],
                                compression=args.compression)

    # add a writer
    cerebro.addwriter(bt.WriterFile, csv=True)

    # Run over everything
    cerebro.run()

    # Plot the result
    cerebro.plot(style='bar')


def parse_args():
    parser = argparse.ArgumentParser(
        description='Resampling script down to tick data')

    parser.add_argument('--dataname', default='', required=False,
                        help='File Data to Load')

    parser.add_argument('--timeframe', default='ticks', required=False,
                        choices=['ticks', 'microseconds', 'seconds',
                                 'minutes', 'daily', 'weekly', 'monthly'],
                        help='Timeframe to resample to')

    parser.add_argument('--compression', default=1, required=False, type=int,
                        help=('Compress n bars into 1'))

    return parser.parse_args()


if __name__ == '__main__':
    runstrat()

推薦閱讀

相關文章

Backtrader按日線交易

似乎在世界某個地方有一種权益(Interest)可以總結如下: 使用每日柱線引入訂單,但使用開盤價 這來自工單#105订单执行逻辑与当前数据和#101动态投注计算中的對話 backtrader 嘗試盡可能保持現實,並且在處理每日柱線時適用以下前提: 當每日柱被評估時,柱線已經結束 這是有道理的,

Backtrader期貨補償與現貨補償

版本1.9.32.116 增加了對社區中呈現的有趣用例 的支援 以期貨開始交易,包括實物交割 讓一個指標告訴你一些事情 如果需要, close 現貨價格操作,有效地取消實物交割,無論是為了接收貨物還是為了必須交付貨物(並希望獲利)來頭寸。

Backtrader教程:操作平臺

Line 反覆運算器 為了參與操作,plaftorm使用 line 反覆運算器的概念。它們已經鬆散地模仿了Python的反覆運算器,但實際上與它們無關。 策略和指標是 line 反覆運算器。

Backtrader教程:日誌記錄 - 編寫器

將以下內容寫出到流中: csv 流,

Backtrader教程:數據饋送 - 擴展 (Extending DataFeed)

GitHub 中的問題實際上是在推動文檔部分的完成,或者説明我瞭解我是否backtrader 具有我從一開始就設想的易用性和靈活性以及在此過程中做出的決定。 在本例中為問題 #9。

Backtrader跨越數位

《backtrader》的發佈1.9.27.105糾正了一個疏忽。這是一個疏忽,因為拼圖的所有部分都已到位,但啟動並不是在所有角落都進行的。 該機制使用一個名為的屬性_mindatas,因此讓我們將其稱為: mindatas。 社區問了這個問題,答案並不是很到位。

Backtrader數據多時間幀

有時投資決策是使用不同的時間框架做出的: 每周評估趨勢 每天執行條目 或者5分鐘對60分鐘。 這意味著需要將多個時間幀的數據組合在 backtrader 中以支援此類組合。 對它的本機支持已經內置。

Backtrader多數據範例

社區中的幾個主題似乎以如何跟蹤訂單為導向,特別是當幾個data feeds在起作用時,還包括當多個訂單一起工作時,

Backtrader教程:分析儀 - PyFolio

注意 從(至少)2017-07-25pyfolio 開始,API已更改,不再 create_full_tear_sheet 具有 gross_lev 作為命名參數的參數。

Backtrader信貸利息

在某些情況下,真實經紀人的現金金額可能會減少,因為資產操作包括利率。例子: 賣空股票 交易所買賣基金包括多頭和空頭 這意味著不僅交易構成了系統的盈利能力,因為信貸上的利息在帳戶上佔有一席之地。 為了涵蓋這種情況, backtrader 包括(從發佈1.8.8.96開始)功能來考慮這一點。