因为世界上没有任何事物是孤立存在的,购买资产的触发因素很可能实际上是另一种资产。
使用不同的分析技术,可能已经在两个不同的数据之间发现了相关性。
backtrader支持同时使用不同的数据源,因此它可以在大多数情况下用于此目的。
假设在以下公司之间发现了相关性:
Oracle
Yahoo
可以想像,当雅虎生意好的时候,它会从甲骨文购买更多的服务器、更多的数据库和更专业的服务,从而推高股价。
因此,经过深入分析,制定了一项策略:
如果
Yahoo
的收盘价超过简单移动平均线(第 15 期)购买
Oracle
退出仓位:
- 使用收盘价的向下交叉
订单运行类型:
- 市场
总之,使用backtrader
进行设置需要什么:
创建一个
cerebro
加载数据源 1 (Oracle) 并将其添加到cerebro
加载数据源 2 (Yahoo) 并将其添加到cerebro
加载我们设计的策略
策略细节:
在数据源 2 (Yahoo) 上创建一个简单的移动平均线
使用 Yahoo 的收盘价和移动平均线创建 CrossOver 指针
然后如上所述在数据源 1 (Oracle) 上运行买/卖订单。
下面的脚本使用以下默认值:
甲骨文(数据源 1)
雅虎(数据源 2)
现金:10000(系统默认)
股份:10股
佣金:每轮0.5%(表示为0.005)
期限:15个交易日
期间:2003、2004 和 2005
该脚本可以接受参数来修改上述设置,如帮助文本中所示:
$ ./multidata-strategy.py --help usage: multidata-strategy.py [-h] [--data0 DATA0] [--data1 DATA1] [--fromdate FROMDATE] [--todate TODATE] [--period PERIOD] [--cash CASH] [--commperc COMMPERC] [--stake STAKE] [--plot] [--numfigs NUMFIGS] MultiData Strategy optional arguments: -h, --help show this help message and exit --data0 DATA0, -d0 DATA0 1st data into the system --data1 DATA1, -d1 DATA1 2nd data into the system --fromdate FROMDATE, -f FROMDATE Starting date in YYYY-MM-DD format --todate TODATE, -t TODATE Starting date in YYYY-MM-DD format --period PERIOD Period to apply to the Simple Moving Average --cash CASH Starting Cash --commperc COMMPERC Percentage commission for operation (0.005 is 0.5% --stake STAKE Stake to apply in each operation --plot, -p Plot the read data --numfigs NUMFIGS, -n NUMFIGS Plot using numfigs figures
标准运行的结果:
$ ./multidata-strategy.py 2003-02-11T23:59:59+00:00, BUY CREATE , 9.14 2003-02-12T23:59:59+00:00, BUY COMPLETE, 11.14 2003-02-12T23:59:59+00:00, SELL CREATE , 9.09 2003-02-13T23:59:59+00:00, SELL COMPLETE, 10.90 2003-02-14T23:59:59+00:00, BUY CREATE , 9.45 2003-02-18T23:59:59+00:00, BUY COMPLETE, 11.22 2003-03-06T23:59:59+00:00, SELL CREATE , 9.72 2003-03-07T23:59:59+00:00, SELL COMPLETE, 10.32 ... ... 2005-12-22T23:59:59+00:00, BUY CREATE , 40.83 2005-12-23T23:59:59+00:00, BUY COMPLETE, 11.68 2005-12-23T23:59:59+00:00, SELL CREATE , 40.63 2005-12-27T23:59:59+00:00, SELL COMPLETE, 11.63 ================================================== Starting Value - 100000.00 Ending Value - 99959.26 ==================================================
经过两年完整的战略运行后:
- 损失了 40.74 个货币单位
雅虎和甲骨文之间的相关性就这么多
视觉输出(添加--plot
以生成图表)
以及脚本(已添加到samples/multidata-strategy
目录下的backtrader
的源代码分发中。
from __future__ import (absolute_import, division, print_function, unicode_literals) import argparse import datetime # The above could be sent to an independent module import backtrader as bt import backtrader.feeds as btfeeds import backtrader.indicators as btind class MultiDataStrategy(bt.Strategy): ''' This strategy operates on 2 datas. The expectation is that the 2 datas are correlated and the 2nd data is used to generate signals on the 1st - Buy/Sell Operationss will be executed on the 1st data - The signals are generated using a Simple Moving Average on the 2nd data when the close price crosses upwwards/downwards The strategy is a long-only strategy ''' params = dict( period=15, stake=10, printout=True, ) def log(self, txt, dt=None): if self.p.printout: dt = dt or self.data.datetime[0] dt = bt.num2date(dt) print('%s, %s' % (dt.isoformat(), txt)) def notify_order(self, order): if order.status in [bt.Order.Submitted, bt.Order.Accepted]: return # Await further notifications if order.status == order.Completed: if order.isbuy(): buytxt = 'BUY COMPLETE, %.2f' % order.executed.price self.log(buytxt, order.executed.dt) else: selltxt = 'SELL COMPLETE, %.2f' % order.executed.price self.log(selltxt, order.executed.dt) elif order.status in [order.Expired, order.Canceled, order.Margin]: self.log('%s ,' % order.Status[order.status]) pass # Simply log # Allow new orders self.orderid = None def __init__(self): # To control operation entries self.orderid = None # Create SMA on 2nd data sma = btind.MovAv.SMA(self.data1, period=self.p.period) # Create a CrossOver Signal from close an moving average self.signal = btind.CrossOver(self.data1.close, sma) def next(self): if self.orderid: return # if an order is active, no new orders are allowed if not self.position: # not yet in market if self.signal > 0.0: # cross upwards self.log('BUY CREATE , %.2f' % self.data1.close[0]) self.buy(size=self.p.stake) else: # in the market if self.signal < 0.0: # crosss downwards self.log('SELL CREATE , %.2f' % self.data1.close[0]) self.sell(size=self.p.stake) def stop(self): print('==================================================') print('Starting Value - %.2f' % self.broker.startingcash) print('Ending Value - %.2f' % self.broker.getvalue()) print('==================================================') def runstrategy(): args = parse_args() # Create a cerebro cerebro = bt.Cerebro() # Get the dates from the args fromdate = datetime.datetime.strptime(args.fromdate, '%Y-%m-%d') todate = datetime.datetime.strptime(args.todate, '%Y-%m-%d') # Create the 1st data data0 = btfeeds.YahooFinanceCSVData( dataname=args.data0, fromdate=fromdate, todate=todate) # Add the 1st data to cerebro cerebro.adddata(data0) # Create the 2nd data data1 = btfeeds.YahooFinanceCSVData( dataname=args.data1, fromdate=fromdate, todate=todate) # Add the 2nd data to cerebro cerebro.adddata(data1) # Add the strategy cerebro.addstrategy(MultiDataStrategy, period=args.period, stake=args.stake) # Add the commission - only stocks like a for each operation cerebro.broker.setcash(args.cash) # Add the commission - only stocks like a for each operation cerebro.broker.setcommission(commission=args.commperc) # And run it cerebro.run() # Plot if requested if args.plot: cerebro.plot(numfigs=args.numfigs, volume=False, zdown=False) def parse_args(): parser = argparse.ArgumentParser(description='MultiData Strategy') parser.add_argument('--data0', '-d0', default='../../datas/orcl-1995-2014.txt', help='1st data into the system') parser.add_argument('--data1', '-d1', default='../../datas/yhoo-1996-2014.txt', help='2nd data into the system') parser.add_argument('--fromdate', '-f', default='2003-01-01', help='Starting date in YYYY-MM-DD format') parser.add_argument('--todate', '-t', default='2005-12-31', help='Starting date in YYYY-MM-DD format') parser.add_argument('--period', default=15, type=int, help='Period to apply to the Simple Moving Average') parser.add_argument('--cash', default=100000, type=int, help='Starting Cash') parser.add_argument('--commperc', default=0.005, type=float, help='Percentage commission for operation (0.005 is 0.5%%') parser.add_argument('--stake', default=10, type=int, help='Stake to apply in each operation') parser.add_argument('--plot', '-p', action='store_true', help='Plot the read data') parser.add_argument('--numfigs', '-n', default=1, help='Plot using numfigs figures') return parser.parse_args() if __name__ == '__main__': runstrategy()