Backtrader教程:繪圖 - 日期範圍

  |  

該版本1.9.31.x 增加了製作部分繪圖的功能。

  • 使用策略實例中保存的完整時間戳陣列的索引

  • 或者使用實際datetime.datedatetime.datetime 實例來限制必須繪製的內容。

一切都超過標準cerebro.plot。例:

cerebro.plot(start=datetime.date(2005, 7, 1), end=datetime.date(2006, 1, 31))

這是為人類做這件事的直接方法。具有擴展功能的人實際上可以嘗試對時間戳進行索引,datetime 例如:

cerebro.plot(start=75, end=185)

下面給出了一個非常標準的樣本,其中包含簡單移動平均線(數據上繪圖),隨機振蕩(獨立繪圖)和隨機 lines 的交叉。的cerebro.plot 參數作為命令傳遞 line 參數。

使用以下date 方法執行:

./partial-plot.py --plot 'start=datetime.date(2005, 7, 1),end=datetime.date(2006, 1, 31)'

eval python中的魔力允許直接寫入datetime.date命令line並將其映射到合理的東西。輸出圖表

讓我們將其與完整圖進行比較,以查看數據實際上從兩端跳過:

./partial-plot.py --plot

eval python中的魔力允許直接寫入datetime.date命令line並將其映射到合理的東西。輸出圖表

示例用法

$ ./partial-plot.py --help
usage: partial-plot.py [-h] [--data0 DATA0] [--fromdate FROMDATE]
                       [--todate TODATE] [--cerebro kwargs] [--broker kwargs]
                       [--sizer kwargs] [--strat kwargs] [--plot [kwargs]]

Sample for partial plotting

optional arguments:
  -h, --help           show this help message and exit
  --data0 DATA0        Data to read in (default:
                       ../../datas/2005-2006-day-001.txt)
  --fromdate FROMDATE  Date[time] in YYYY-MM-DD[THH:MM:SS] format (default: )
  --todate TODATE      Date[time] in YYYY-MM-DD[THH:MM:SS] format (default: )
  --cerebro kwargs     kwargs in key=value format (default: )
  --broker kwargs      kwargs in key=value format (default: )
  --sizer kwargs       kwargs in key=value format (default: )
  --strat kwargs       kwargs in key=value format (default: )
  --plot [kwargs]      kwargs in key=value format (default: )

示例代碼

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)


import argparse
import datetime

import backtrader as bt


class St(bt.Strategy):
    params = (
    )

    def __init__(self):
        bt.ind.SMA()
        stoc = bt.ind.Stochastic()
        bt.ind.CrossOver(stoc.lines.percK, stoc.lines.percD)

    def next(self):
        pass


def runstrat(args=None):
    args = parse_args(args)

    cerebro = bt.Cerebro()

    # Data feed kwargs
    kwargs = dict()

    # Parse from/to-date
    dtfmt, tmfmt = '%Y-%m-%d', 'T%H:%M:%S'
    for a, d in ((getattr(args, x), x) for x in ['fromdate', 'todate']):
        if a:
            strpfmt = dtfmt + tmfmt * ('T' in a)
            kwargs[d] = datetime.datetime.strptime(a, strpfmt)

    # Data feed
    data0 = bt.feeds.BacktraderCSVData(dataname=args.data0, **kwargs)
    cerebro.adddata(data0)

    # Broker
    cerebro.broker = bt.brokers.BackBroker(**eval('dict(' + args.broker + ')'))

    # Sizer
    cerebro.addsizer(bt.sizers.FixedSize, **eval('dict(' + args.sizer + ')'))

    # Strategy
    cerebro.addstrategy(St, **eval('dict(' + args.strat + ')'))

    # Execute
    cerebro.run(**eval('dict(' + args.cerebro + ')'))

    if args.plot:  # Plot if requested to
        cerebro.plot(**eval('dict(' + args.plot + ')'))


def parse_args(pargs=None):
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        description=(
            'Sample for partial plotting'
        )
    )

    parser.add_argument('--data0', default='../../datas/2005-2006-day-001.txt',
                        required=False, help='Data to read in')

    # Defaults for dates
    parser.add_argument('--fromdate', required=False, default='',
                        help='Date[time] in YYYY-MM-DD[THH:MM:SS] format')

    parser.add_argument('--todate', required=False, default='',
                        help='Date[time] in YYYY-MM-DD[THH:MM:SS] format')

    parser.add_argument('--cerebro', required=False, default='',
                        metavar='kwargs', help='kwargs in key=value format')

    parser.add_argument('--broker', required=False, default='',
                        metavar='kwargs', help='kwargs in key=value format')

    parser.add_argument('--sizer', required=False, default='',
                        metavar='kwargs', help='kwargs in key=value format')

    parser.add_argument('--strat', required=False, default='',
                        metavar='kwargs', help='kwargs in key=value format')

    parser.add_argument('--plot', required=False, default='',
                        nargs='?', const='{}',
                        metavar='kwargs', help='kwargs in key=value format')

    return parser.parse_args(pargs)


if __name__ == '__main__':
    runstrat()

推薦閱讀

相關文章

Backtrader教程:經紀人 - 開倉作弊

“發佈”1.9.44.116 添加了對 Cheat-On-Open的支援。這似乎是那些全力以赴的人的需求功能,他們在酒吧 close 后進行了計算,但希望與 open 價格相匹配。 當開盤價跳空(上漲或下跌,取決於是否buysell有效)並且現金不足以進行全面運營時,這樣的用例就會失敗。這將強制代理拒絕該操作。

Backtrader對逐筆報價數據重新取樣

backtrader 已經可以從分鐘數據中重新採樣。接受價格變動數據不是問題,只需將 4 個常用欄位(open、 high、 low、 close)設置為價格變動值。 但是傳遞要重新採樣的逐筆報價數據再次生成相同的數據。作為或版本 1.1.11.88,情況已不再如此。

Backtrader期貨補償與現貨補償

版本1.9.32.116 增加了對社區中呈現的有趣用例 的支援 以期貨開始交易,包括實物交割 讓一個指標告訴你一些事情 如果需要, close 現貨價格操作,有效地取消實物交割,無論是為了接收貨物還是為了必須交付貨物(並希望獲利)來頭寸。

Backtrader教程:操作平臺

Line 反覆運算器 為了參與操作,plaftorm使用 line 反覆運算器的概念。它們已經鬆散地模仿了Python的反覆運算器,但實際上與它們無關。 策略和指標是 line 反覆運算器。

BacktraderPyFolio 集成

注意 2017年2月 pyfolio API 已更改,不再 create_full_tear_sheet 具有 gross_lev 作為命名參數的參數。

Backtrader跨越數位

《backtrader》的發佈1.9.27.105糾正了一個疏忽。這是一個疏忽,因為拼圖的所有部分都已到位,但啟動並不是在所有角落都進行的。 該機制使用一個名為的屬性_mindatas,因此讓我們將其稱為: mindatas。 社區問了這個問題,答案並不是很到位。

Backtrader數據多時間幀

有時投資決策是使用不同的時間框架做出的: 每周評估趨勢 每天執行條目 或者5分鐘對60分鐘。 這意味著需要將多個時間幀的數據組合在 backtrader 中以支援此類組合。 對它的本機支持已經內置。

Backtrader教程:日期時間 - 管理

在 1.5.0 版之前, backtrader 使用直接的方法來進行時間管理,因為數據源計算的任何日期時間都只是按面值使用。 對於任何使用者輸入也是如此,例如可以提供給任何數據源的參數fromdate (或 sessionstart)的情況 考慮到直接控制凍結的數據源以進行回溯測試,這種方法很好。

Backtrader卡爾曼等

注意 對以下指令的支援從提交開始 發佈1.9.30.x 將是包含它的第1個版本 。 backtrader的原始目標之一是成為純python,即:僅使用標準發行版中可用的軟體包。只有一個例外是matplotlib在沒有重新發明輪子的情況下進行繪圖。

Backtrader終極振蕩器

backtrader開發啟動時的目標之一是使開發新的指標變得非常容易(至少對作者本人而言),以在數學和視覺上測試想法。 門票#102 是關於將 UltimateOscillator 添加到 backtrader 注意 它將在下一個版本中添加,同時可以使用下面的代碼使用它。 票證中所示的參考: 以及: 無需在這裡重複。