Backtrader追踪订单

  |  

版本1.9.35.116StopTrailStopTrailLimit订单运行类型添加到回测库中。

笔记

这仅在回测中实现,还没有针对实时经纪人的实现

笔记

更新为1.9.36.116版本。盈透证券支持StopTrailStopTrailLimitOCO

  • OCO始终将组中的oco一个订单指定为参数oco

  • StopTrailLimit :代理仿真和IB代理具有 asme 行为。指定: price作为初始止损触发价格(同时指定trailamount ),然后plimi作为初始限价。两者的差值将决定limitoffset (限价与止损触发价之间的距离)

使用模式完全集成到策略实例的标准buysellclose操作方法中。通知:

  • 指示希望使用哪种运行类型,如exectype=bt.Order.StopTrail

  • 以及是否必须使用固定距离或基于百分比的距离计算追踪价格

    • 固定距离: trailamount=10

    • 基于百分比的距离: trailpercent=0.02 (即: 2%

如果一个人通过发出buy进入市场多头,这就是使用StopTrailtrailamountsell的作用:

  • 如果未指定price ,则使用最新close

  • 从价格中减去trailamount以找到stop (或触发)价格

  • 经纪人的下一次迭代检查是否已达到触发价格

    • 如果:订单以Market运行类型的方式运行

    • 如果,则使用最新close价并减去trailamount距离重新计算stop

    • 如果新价格上涨,则更新

    • 如果新价格会下降(或根本没有变化),则将其丢弃

也就是说:追踪止损价格跟随价格上涨,但如果价格开始下跌,则保持不变,以潜在地获得利润。

如果一个人以sell的方式进入市场,那么使用StopTrail发出buy指令只会做相反的事情,即:价格跟随向下。

一些使用模式

# For a StopTrail going downwards
# last price will be used as reference
self.buy(size=1, exectype=bt.Order.StopTrail, trailamount=0.25)
# or
self.buy(size=1, exectype=bt.Order.StopTrail, price=10.50, trailamount=0.25)

# For a StopTrail going upwards
# last price will be used as reference
self.sell(size=1, exectype=bt.Order.StopTrail, trailamount=0.25)
# or
self.sell(size=1, exectype=bt.Order.StopTrail, price=10.50, trailamount=0.25)

也可以指定trailpercent而不是trailamount并且到价格的距离将计算为价格的百分比

# For a StopTrail going downwards with 2% distance
# last price will be used as reference
self.buy(size=1, exectype=bt.Order.StopTrail, trailpercent=0.02)
# or
self.buy(size=1, exectype=bt.Order.StopTrail, price=10.50, trailpercent=0.0.02)

# For a StopTrail going upwards with 2% difference
# last price will be used as reference
self.sell(size=1, exectype=bt.Order.StopTrail, trailpercent=0.02)
# or
self.sell(size=1, exectype=bt.Order.StopTrail, price=10.50, trailpercent=0.02)

对于StopTrailLimit

  • 唯一的区别是当追踪止损价格被触发时会发生什么。

  • 在这种情况下,订单作为Limit订单运行(与StopLimit订单的行为相同,但在这种情况下具有动态触发价格)

    笔记

    必须指定plimit=xx才能buysell ,这将是限价

    笔记

    限价不会像止损/触发价格那样动态变化

一个例子总是值一千字,因此通常的反向交易样本,

  • 使用移动平均线向上交叉进入市场做多

  • 使用追踪止损退出市场

50点固定价格距离的运行

$ ./trail.py --plot --strat trailamount=50.0

产生以下图表

以及以下输出:

**************************************************
2005-02-14,3075.76,3025.76,3025.76
----------
2005-02-15,3086.95,3036.95,3036.95
2005-02-16,3068.55,3036.95,3018.55
2005-02-17,3067.34,3036.95,3017.34
2005-02-18,3072.04,3036.95,3022.04
2005-02-21,3063.64,3036.95,3013.64
...
...
**************************************************
2005-05-19,3051.79,3001.79,3001.79
----------
2005-05-20,3050.45,3001.79,3000.45
2005-05-23,3070.98,3020.98,3020.98
2005-05-24,3066.55,3020.98,3016.55
2005-05-25,3059.84,3020.98,3009.84
2005-05-26,3086.08,3036.08,3036.08
2005-05-27,3084.0,3036.08,3034.0
2005-05-30,3096.54,3046.54,3046.54
2005-05-31,3076.75,3046.54,3026.75
2005-06-01,3125.88,3075.88,3075.88
2005-06-02,3131.03,3081.03,3081.03
2005-06-03,3114.27,3081.03,3064.27
2005-06-06,3099.2,3081.03,3049.2
2005-06-07,3134.82,3084.82,3084.82
2005-06-08,3125.59,3084.82,3075.59
2005-06-09,3122.93,3084.82,3072.93
2005-06-10,3143.85,3093.85,3093.85
2005-06-13,3159.83,3109.83,3109.83
2005-06-14,3162.86,3112.86,3112.86
2005-06-15,3147.55,3112.86,3097.55
2005-06-16,3160.09,3112.86,3110.09
2005-06-17,3178.48,3128.48,3128.48
2005-06-20,3162.14,3128.48,3112.14
2005-06-21,3179.62,3129.62,3129.62
2005-06-22,3182.08,3132.08,3132.08
2005-06-23,3190.8,3140.8,3140.8
2005-06-24,3161.0,3140.8,3111.0
...
...
...
**************************************************
2006-12-19,4100.48,4050.48,4050.48
----------
2006-12-20,4118.54,4068.54,4068.54
2006-12-21,4112.1,4068.54,4062.1
2006-12-22,4073.5,4068.54,4023.5
2006-12-27,4134.86,4084.86,4084.86
2006-12-28,4130.66,4084.86,4080.66
2006-12-29,4119.94,4084.86,4069.94

系统使用追踪止损退出市场,而不是等待通常的交叉向下模式。让我们以第一次操作为例

  • 做多收盘价: 3075.76

  • 系统计算的追踪止损价格: 3025.76 (距离50单位)

  • 示例计算的追踪止损价格: 3025.76 (每显示的最后价格)

在第一次计算之后:

  • 收盘价上涨至3086.95 ,止损价调整至3036.95

  • 以下收盘价不超过3086.95且触发价不变

在其他 2 个操作中可以看到相同的模式。

为了比较,只有30个固定距离点的运行(只是图表)

$ ./trail.py --plot --strat trailamount=30.0

还有图表

最后一次运行, trailpercent=0.02

$ ./trail.py --plot --strat trailpercent=0.02

对应的图表。

样本用法

$ ./trail.py --help
usage: trail.py [-h] [--data0 DATA0] [--fromdate FROMDATE] [--todate TODATE]
                [--cerebro kwargs] [--broker kwargs] [--sizer kwargs]
                [--strat kwargs] [--plot [kwargs]]

StopTrail Sample

optional arguments:
  -h, --help           show this help message and exit
  --data0 DATA0        Data to read in (default:
                       ../../datas/2005-2006-day-001.txt)
  --fromdate FROMDATE  Date[time] in YYYY-MM-DD[THH:MM:SS] format (default: )
  --todate TODATE      Date[time] in YYYY-MM-DD[THH:MM:SS] format (default: )
  --cerebro kwargs     kwargs in key=value format (default: )
  --broker kwargs      kwargs in key=value format (default: )
  --sizer kwargs       kwargs in key=value format (default: )
  --strat kwargs       kwargs in key=value format (default: )
  --plot [kwargs]      kwargs in key=value format (default: )

示例代码

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import argparse
import datetime

import backtrader as bt


class St(bt.Strategy):
    params = dict(
        ma=bt.ind.SMA,
        p1=10,
        p2=30,
        stoptype=bt.Order.StopTrail,
        trailamount=0.0,
        trailpercent=0.0,
    )

    def __init__(self):
        ma1, ma2 = self.p.ma(period=self.p.p1), self.p.ma(period=self.p.p2)
        self.crup = bt.ind.CrossUp(ma1, ma2)
        self.order = None

    def next(self):
        if not self.position:
            if self.crup:
                o = self.buy()
                self.order = None
                print('*' * 50)

        elif self.order is None:
            self.order = self.sell(exectype=self.p.stoptype,
                                   trailamount=self.p.trailamount,
                                   trailpercent=self.p.trailpercent)

            if self.p.trailamount:
                tcheck = self.data.close - self.p.trailamount
            else:
                tcheck = self.data.close * (1.0 - self.p.trailpercent)
            print(','.join(
                map(str, [self.datetime.date(), self.data.close[0],
                          self.order.created.price, tcheck])
                )
            )
            print('-' * 10)
        else:
            if self.p.trailamount:
                tcheck = self.data.close - self.p.trailamount
            else:
                tcheck = self.data.close * (1.0 - self.p.trailpercent)
            print(','.join(
                map(str, [self.datetime.date(), self.data.close[0],
                          self.order.created.price, tcheck])
                )
            )


def runstrat(args=None):
    args = parse_args(args)

    cerebro = bt.Cerebro()

    # Data feed kwargs
    kwargs = dict()

    # Parse from/to-date
    dtfmt, tmfmt = '%Y-%m-%d', 'T%H:%M:%S'
    for a, d in ((getattr(args, x), x) for x in ['fromdate', 'todate']):
        if a:
            strpfmt = dtfmt + tmfmt * ('T' in a)
            kwargs[d] = datetime.datetime.strptime(a, strpfmt)

    # Data feed
    data0 = bt.feeds.BacktraderCSVData(dataname=args.data0, **kwargs)
    cerebro.adddata(data0)

    # Broker
    cerebro.broker = bt.brokers.BackBroker(**eval('dict(' + args.broker + ')'))

    # Sizer
    cerebro.addsizer(bt.sizers.FixedSize, **eval('dict(' + args.sizer + ')'))

    # Strategy
    cerebro.addstrategy(St, **eval('dict(' + args.strat + ')'))

    # Execute
    cerebro.run(**eval('dict(' + args.cerebro + ')'))

    if args.plot:  # Plot if requested to
        cerebro.plot(**eval('dict(' + args.plot + ')'))


def parse_args(pargs=None):
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        description=(
            'StopTrail Sample'
        )
    )

    parser.add_argument('--data0', default='../../datas/2005-2006-day-001.txt',
                        required=False, help='Data to read in')

    # Defaults for dates
    parser.add_argument('--fromdate', required=False, default='',
                        help='Date[time] in YYYY-MM-DD[THH:MM:SS] format')

    parser.add_argument('--todate', required=False, default='',
                        help='Date[time] in YYYY-MM-DD[THH:MM:SS] format')

    parser.add_argument('--cerebro', required=False, default='',
                        metavar='kwargs', help='kwargs in key=value format')

    parser.add_argument('--broker', required=False, default='',
                        metavar='kwargs', help='kwargs in key=value format')

    parser.add_argument('--sizer', required=False, default='',
                        metavar='kwargs', help='kwargs in key=value format')

    parser.add_argument('--strat', required=False, default='',
                        metavar='kwargs', help='kwargs in key=value format')

    parser.add_argument('--plot', required=False, default='',
                        nargs='?', const='{}',
                        metavar='kwargs', help='kwargs in key=value format')

    return parser.parse_args(pargs)


if __name__ == '__main__':
    runstrat()

推荐阅读

相关文章

Backtrader向 OHLC 提供买入价/卖出价数据

最近,backtrader通过实现line覆盖来运行从 ohlc-land 逃逸,这允许重新定义整个层次结构,例如,具有仅具有 bid,ask 和 datetime lines的data feeds。

Backtrader期货展期

并非每个供应商都为可以交易的工具提供连续的未来。有时提供的数据是仍然有效的到期日期的数据,即:仍在交易的日期 这在回溯测试方面并不是很有帮助,因为数据分散在几个不同的仪器上,这些仪器另外...时间重叠。 能够正确地将这些仪器的数据从过去连接到连续的流中,可以减轻疼痛。

Backtrader教程:安装

要求和版本 backtrader 是独立的,没有外部依赖关系(除非要绘图) 基本要求是: Python 2.7 Python 3.2 / 3.3/ 3.4 / 3.5 pypy/pypy3 如果需要绘图,则其他要求: Matplotlib >= 1.4.

Backtrader教程:仓位

资产的头寸通常从策略中检查: position (财产)或 getposition(data=None, broker=None) 这将返回策略在默认broker状态下datas[0]的位置,由cerebro 仓位只是指示: 资产被持有size 平均价格price 它作为一种状态,

Backtrader唐钟斯10天连胜

它已成为新闻。DJI正在创下历史新高,已经连续10个上涨日和9个历史高点。例如,请参阅: 当然,许多人已经注意到道琼斯指数处于这样的状态,这篇文章只是告诉我们它正在成为主流。

Backtrader回溯

在一些关于改进的ShapeRatio的提示之后, backtrader 已将此分析仪添加到其武器库中。 文献位于: 从对数回报的好处开始,并遵循在SharpeRatio方程的分母中具有标准偏差的副作用,本文档开发了该分析仪的公式和期望。

Backtrader扩展数据馈送

GitHub 中的问题实际上是在推动文档部分的完成,或者说明我了解 backtrader 是否具有我从最初时刻就设想的易用性和灵活性以及在此过程中做出的决定。 在本例中为问题 #9。

Backtrader跨越数字

《backtrader》的发布1.9.27.105纠正了一个疏忽。这是一个疏忽,因为拼图的所有部分都已到位,但启动并不是在所有角落都进行的。 该机制使用一个名为的属性_mindatas,因此让我们将其称为: mindatas。 社区问了这个问题,答案并不是很到位。

Backtrader教程:数据馈送 - 雅虎

2017年5月,雅虎停止了现有的CSV格式历史数据下载API。 一个新的API(这里命名v7)很快被标准化并已实现。 这也带来了实际CSV下载格式的变化。 使用 v7 API/格式 从版本1.9.49.116 开始,这是缺省行为。

Backtrader教程:分析仪 - PyFolio

注意 从(至少)2017-07-25pyfolio 开始,API已更改,不再 create_full_tear_sheet 具有 gross_lev 作为命名参数的参数。